KALKboek

HET GEbruIK VAN KALK ALS BINDMIDDEL VOOR METSEL- EN VOEGMORTELS IN VERLEDEN EN HEDEN
kalkboek

het gebruik van kalk als bindmiddel voor metsel- en voegmortels in verleden en heden

Koen van Balen
Bert van Bommel
Rob van Hees
Michiel van Hunen
Jeroen van Rhijn
Matth van Rooden

met medewerking van
Kristof Callebaut
René van der Loos
Loek van der Klugt

in opdracht van de Rijksdienst voor de Monumentenzorg

2003
Inhoud

<table>
<thead>
<tr>
<th>Hoofdstuk</th>
<th>Titel</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kalk, ethiek en ecologie</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Bindmiddelen voor mortel</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Van kalkhydraat tot klei: een waaier aan bindmiddelen</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Restauratie met kalkmortel</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Behoud van waarden</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Restaureren met oog op de toekomst</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Gevolgen voor het authentieke materiaal</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Ingreep als erfenis</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Van abstractie naar praktijk</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Kalk en restauratie-ethiek</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Duurzaam bouwen met kalkmortel</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Bepalen van het effect op het milieu</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Steenkalk, schelpkalk en cement vergeleken</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Metselwerk met mortels van steenkalk, schelpkalk en cement</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Besluit</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Historische bindmiddelen</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Het begin van het kalktijdperk: Griekse mortel</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Ontwikkeling met eeuwenlange resultaten: Romeinse mortel</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Kalk in het middeleeuwse bouwbedrijf</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>De middeleeuwse kalkmortels en het bouwproces</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>De Renaissance herontdekt de Romeinse mortel</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Kalk in de zeventiende eeuw volgens Perrault</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Kalk in de achttiende eeuw</td>
<td></td>
</tr>
</tbody>
</table>
Kalkboek

2.8 Van kalk naar andere bindmiddelen voor mortel ...67
2.9 Kalk en andere bindmiddelen in de negentiende eeuw70
2.10 De overweldigende opkomst van portlandcement76
2.11 En stilaan komt kalk in de vergeethoek ..77
3 De vicieuze cirkel doorbroken ...78
 Scheppend kalk in vergankelijkheid (gedicht)..79
3 Van grondstof tot mortel
 1 Inleiding ..81
 2 De grondstoffen van kalkmortel ...82
 2.1 Kalksteen ..82
 2.2 Schelpen ...88
 2.3 Natuurlijke puzzolanen ...90
 2.4 Synthetische puzzolanen ...92
 2.5 Zand ..94
 3 De productie van het bindmiddel kalk ..101
 3.1 Productie van steenkalk vroeger en nu ...101
 3.2 Productie van schelpkalk vroeger en nu ...105
 4 Het blussen van kalk ..107
 4.1 Blussen van luchthardende kalk ..107
 4.2 Blussen van hydraulische kalk ...113
 5 Handel en distributie van kalk ..113
 6 De componenten en hun verhoudingen ...114
 6.1 Het mortelrecept ...114
 6.2 Historische mortels ..115
 6.3 Het mengen van componenten voor mortels117
 7 De verharding van kalkmortel ..123
 7.1 Carbonatatie of de uitharding van luchtkalk ..123
 7.2 Hydratatie of de uitharding van hydraulische kalk124
 7.3 Werking van puzzolanen ..125
 7.4 Portlandcement ..126
 7.5 Hechting van kalkmortel aan de steen ..127
 8 Besluit ..129
4 Duurzaamheid en verwering
 1 Inleiding ..131
 2 Bepalende factoren voor degradatieprocessen132
 2.1 Processen ...133
 2.2 De prominente rol van water bij degradatie139
Inhoud

3 Voorbeelden ..142
3.1 Vervorming van metselwerk met kalkmortel ...142
3.2 Vorstschade ...144
3.3 Zoutkristallisatie ..147
3.4 Vorming van thaumasiet en ettringiet ...150
3.5 Gipsvorming, zwarte korsten, openbarsten van voegen155
3.6 Expansieve gipsvorming aan de binnenzijde van een gebouw158
3.7 Uitloging ...162
3.8 Erosie en uitspoeling ..163
3.9 Zwakke mortel (vroegtijdige verwering) ...165
3.10 Effect van zeezouten op kalkmortel ..167
3.11 Hygroscopisch gedrag van een pleisterlaag en voegmortel168
3.12 Biologische groei ..169
4 Bezint eer ge begint ..171

5 Kalk in de praktijk
1 Te verrichten onderzoek ...175
1.1 Inleiding ...175
1.2 Visuele inspectie en bemonstering ..178
1.3 Petrografisch onderzoek ..185
1.4 Chemisch en fysisch onderzoek ...190
2 Ethische en esthetische aspecten ...193
2.1 Ethische noties uit de praktijkervaring ..195
2.2 Conclusies ..197
3 Kalkmortel voor de hedendaagse praktijk ...203
3.1 Kalk in het bouwproces: van planning tot nazorg203
3.2 Samenstellen van kalkmortels ...206
3.3 Het gebruik van kalk in de huidige bouwpraktijk209
3.4 Vragen en antwoorden over kalkmortels in de praktijk215
4 Voorbeelden uit de praktijk ...225
4.1 Kademuur langs de IJssel te Deventer ...225
4.2 Molen van Oelegem ..229
4.3 Begijnhof in Hoogstraten ...231
4.4 Molen De Walvis te Schiedam ...232
4.5 Vensters van de Eben Haezerkerk te Scheveningen234

6 Nawoord ..237

Aanhangsel
1 Bijlage: Het testament van Adriaan Bommenee243
<table>
<thead>
<tr>
<th></th>
<th>De verbindingsmaterialen volgens W.C. Brade</th>
<th>Summary</th>
<th>Zusammenfassung</th>
<th>Résumé</th>
<th>Geraadpleegde bronnen</th>
<th>Woordenlijst</th>
<th>Auteurs en andere betrokkenen</th>
<th>Colofon</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>...</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>..........</td>
<td>................</td>
<td>........</td>
<td>........................</td>
<td>..........</td>
<td>...............................</td>
<td>..........</td>
</tr>
</tbody>
</table>
Samenvatting

Tegenwoordig wordt voor het metselen en voegen vooral mortel gebruikt waarin portlandcement het enige of voornaamste bindmiddel is. Daardoor is veel kennis over kalkmortels verloren gegaan. Vanaf het einde van de negentiende eeuw hebben cementgebonden mortels steeds nadrukkelijker de plaats van kalkgebonden mortels ingenomen. Hiervoor zijn meerdere redenen aan te wijzen. Dat een cementmortel veel sneller de eindsterkte bereikt is misschien wel de belangrijkste. De bouwpraktijk heeft zich moeten aanpassen aan een steeds groter wordende behoefte aan bouwwerken, zoals huizen, fabrieken, scholen en civieltechnische werken. Dit was vooral het gevolg van bevolkingsaanwas en industrialisatie. De explosieve groei van de bouwproductie direct na de Tweede Wereldoorlog, waarbij herstel van oorlogsschade en lediging van een substantiële woningnood gelijktijdig moesten worden aangepakt, vormt daarin een mijlpaal. Snel bouwen was een noodzaak geworden en dat kon met cementgebonden mortels. En dat kan nog steeds. Desalniettemin is er momenteel sprake van de herontdekking van kalkgebonden mortels, met name voor de toepassing in de restauratie- en renovatiesector. Die toepassing is gestoeld op het compatibiliteitsprincipe: restauratiemortels moeten goed samen kunnen gaan met de historische materialen. In de dagelijkse restauratiepraktijk wordt tegenwoordig nogal eens gewerkt met mortels die niet of onvoldoende compatibel zijn. Dit leidt tot minder duurzaam werk en kan op termijn tot schade leiden. In veel gevallen zijn kalkmortels wel of meer compatibel met historisch metselwerk dan de cementmortels uit de nieuwbouwpraktijk. Historische toepassingen van kalkmortel die vandaag nog in goede staat zijn tonen aan dat kalkmortel – indien ze de juiste samenstelling had en vakkundig was verwerkt – erg duurzaam kan zijn. Deze publicatie behandelt de toepassing van kalkgebonden
metsel- en voegmortels en is mede tot stand gekomen uit de waardering voor dit materiaal.

Het recept voor kalkmortel

Bij kalkmortels bestaat het bindmiddel uit luchtkalk (calciumhydroxide, Ca(OH)$_2$) of uit hydraulische kalk. Hydraulische kalk bestaat voor een deel uit calciumhydroxide en verder vooral uit calciumsilicaat dat met water reageert en daarbij verhardt. Calciumhydroxide ontstaat door het met water blussen van ongebluste kalk. Ongebluste kalk (CaO) verkrijgt men door het branden (in kalkovens) van kalksteen of schelpen (de grondstoffen voor kalk). Kalksteen en schelpen bestaan voor een belangrijk deel uit calciumcarbonaat (CaCO$_3$).

Een mortel wordt verkregen door bindmiddel en toeslagmaterialen te mengen. Het grootste deel van een mortel bestaat meestal uit toeslagmateriaal (aggregaat). Bij een metsel- of voegmortel is dat doorgaans zand. Het bindmiddel moet de korrels van het aggregaat aan elkaar en aan de baksteen binden. Soms worden ook hulpstoffen toegevoegd. De aard en de verhoudingen van al deze bestanddelen zijn bepalend voor het uithardingsproces en de eigenschappen bij verwerking en na verharding. In hoofdstuk 3 komen de samenstellende delen van kalkmortels aan de orde (§ 2: *De grondstoffen van kalkmortel*). De eigenschappen van de mortel worden echter niet alleen bepaald door de eigenschappen van de stoffen waaruit deze is samengesteld, maar ook door de mengverhoudingen ervan. De keuze van de mortelreceptuur moet worden gemaakt op grond van de specifieke toepassing waarvoor de mortel is bedoeld. Ook dit komt in hoofdstuk 3 aan de orde en wel in § 6: *De componenten en hun verbindingen*. Overigens: deze publicatie is geen receptenboek! Het samenstellen van een mortel is specialistenwerk en moet daarom ook aan deze morteltechnologen worden overgelaten. Aannemers en voegers zijn specialisten op het gebied van de uitvoering en daar moeten zij hun kracht vinden, niet in het zelf dokteren aan mortelrecepten of het onbegrepen vasthouden aan eigen recepturen. Zoals uit de praktijk te vaak blijkt kunnen de monumenten daar het slachtoffer van worden.

Verharding

Na de behandeling van de mortelsamenstellingen komt in § 7: *De verharding van kalkmortel* het uithardingsproces aan de orde.

De verharding van luchtkalkmortels is samen te vatten in de kalkcyclus: het proces van steen tot steen. Brokken kalksteen of schelpen (calciumcarbonaat) worden door het branden omgezet in calciumoxide. Door het blussen met water reageert dit calciumoxide tot calciumhydroxide. Na verwerking ontstaat wederom een
versteende kalk: door de verbinding met koolzuurgas uit de lucht wordt calciumhydroxide omgezet in calciumcarbonaat waarmee de cyclus rond is.

Kalk gemaakt van kalksteen (steenkalk) bestaat, afhankelijk van de mineralogische samenstelling van de grondstof, soms behalve uit kalk ook uit zogenaamde hydraulische nevenbestanddelen. Die reageren met water en kalk tot verhardende gels. Die gels zorgen voor de primaire verharding van het bindmiddel. Indien er na deze primaire verharding nog vrije kalk (calciumhydroxide) in de mortel aanwezig is, vindt na deze primaire verharding ook nog een verharding plaats door de reactie van deze calciumhydroxide met koolzuurgas (tenminste, wanneer de constructie niet van de lucht is afgesloten, bijvoorbeeld doordat deze zich onder water bevindt). Die laatste reactie komt dus overeen met de verharding van luchtkalk. Deze steenkalk zou je dus kunnen opvatten als een mengsel van een hydraulische component en luchtkalk. Het eerste verhardt relatief snel en óók onder water, het tweede relatief langzaam en alleen wanneer koolzuurgas uit de lucht de kalk kan bereiken. De mate waarin het een en het ander aanwezig is, bepaalt of de kalk sterk of weinig hydraulisch is.

Bij afwezigheid van (voldoende) hydraulische componenten, kunnen ter verhoging van de hydrauliciteit en de eindsterkte van de kalkmortel puzzolane componenten aan de kalkspecie worden toegevoegd. Kalk kan samen met deze puzzolane componenten op ongeveer dezelfde wijze verharden als de hydraulische kalk. De puzzolanen kunnen gemalen natuurlijke materialen zijn – zoals tras – of kunstmatige producten zoals gemalen dakpannen of andere zwak gebrande keramische materialen.

Een lange geschiedenis

In hoofdstuk 2 wordt vooral teruggeblikt op het traditionele gebruik van kalkmortels. De toepassing van kalk voor het samenstellen van bouwmortels kent een lange en rijke historie. Deze komt uitgebreid aan bod in § 2: Het gebruik van kalk door de eeuwen heen. Daaraan vooraf gaat een paragraaf over de andere bindmiddelen die voor de samenstelling van mortels werden en worden toegepast. Vanaf de oudheid tot in het recente verleden is ook gebouwd met mortels op basis van bijvoorbeeld leem of gips. Buiten West Europa, met name in ontwikkelingslanden, wordt een hier volstrekt vergeten bindmiddel als leem overigens nog steeds veel toegepast.

Onderzoek

Hoofdstuk 5 opent met een paragraaf over onderzoek. Wanneer historische kalkmortels worden onderzocht, blijkt dat er in het verleden een grote diversiteit aan kalkmortels is toegepast. De verschillen betreffen in hoofdzaak de verhouding tus-
sen bindmiddel en zand, het gebruikte type kalk (luchtkalk of hydraulische kalk) en de aan- of afwezigheid van bijmengingen, bijvoorbeeld in de vorm van tras. Enerzijds zijn deze verschillen te verklaren uit het gebruik van lokale en regionale winplaatsen van de grondstoffen (kalksteen, schelpen). Anderzijds speelt ook de in de loop der tijd groter wordende technische kennis een rol. Daardoor konden mortel-samenstellingen steeds beter worden afgestemd op de omstandigheden waarin en waarvoor de mortel werd toegepast (opgaand metselwerk, waterkerend werk, enzovoort).

Wanneer we in de restauratie of de renovatie kalkmortels willen toepassen, dan zullen we inzicht moeten hebben in de steen en de historische mortel waarop we moeten aansluiten. Belangrijk zijn verder ook weer en wind en andere omgevingsinvloeden. Hoofdstuk 4 gaat op deze omgevingsinvloeden in en biedt inzicht in verwering en degradatie en de daarmee samenhangende eigenschappen zoals duurzaamheid. Dit hoofdstuk vormt een belangrijk fundament voor het laatste deel van hoofdstuk 5, dat gaat over het gebruiken en het samenstellen van kalkmortels (§ 3.2) en voorbeelden uit de praktijk bespreekt (§ 4).

State of the art

Voorliggend boek beoogt de huidige stand van zaken weer te geven, the state of the art. De auteurs hebben – gebruikmakend van hun eigen expertise, van oude en recente publicaties en de inbreng van de werkgroep – getracht een zo compleet mogelijk beeld te schetsen van kalkgebonden mortels voor voeg- en metselwerk. De drijfveer hierachter is niet alleen het inzicht dat met kalk vaak even goede – zo niet betere – mortels zijn te maken als met het tegenwoordig meestal toegepaste cement. Zwaarwegend was ook de overtuiging dat de monumentenzorg baat heeft bij het opnieuwen en ruimer opnemen van dit materiaal in het scala aan voor restauraties beschikbare middelen. Indien het materiaal weer beter wordt gekend, dan zal het ook weer vaker worden toegepast.
Verantwoording

Het gebruik van cement kan ten opzichte van het gebruik van kalk zijn voordelen hebben, óók bij toepassing in traditioneel metselwerk. Uit de bestudering van schadegevallen bij monumenten is echter gebleken dat een aanzienlijk deel daarvan voorkomen had kunnen worden als men in plaats van cement kalk had gebruikt. Een voorbeeld hiervan is vorstschade aan de metselmortel, die het gevolg is van hervoegen met een te dichte cementmortel. Deze schade was voorkomen, indien men met een verstandiger samengestelde cementmortel had gewerkt, maar óók door toepassing van een kalkmortel. Welke van beide mortels het meest aan te bevelen is, verschilt per geval. Datzelfde geldt voor hervoegwerk van muren die met zachte steen zijn opgetrokken. Het is dus niet zo, dat gebruik van kalk altijd beter is. Soms is het verstandig om een cementmortel te gebruiken, soms verdient een kalkmortel de voorkeur. Zeker is echter dat kalk zijn plek verdient in de bouwpraktijk.
Kalkboek

Dit boek kwam tot stand op initiatief van de Nederlandse Rijksdienst voor de Monumentenzorg. Het wil tegemoet komen aan de kennislacune waarmee de restauratiepraktijk in Nederland en in Vlaanderen kampt. De stijgende belangstelling voor kalk vanuit verschillende hoeken en het toenemend aantal onderzoeksresultaten hierover leidden immers ook tot meer vragen vanuit de restauratie- en de renovatiepraktijk.

In dit boek wordt niet alleen aandacht geschonken aan de technische aspecten van kalkmortels. Ook wordt de toepassing ervan geplaatst binnen het raamwerk van milieuzorg en van de ethische aspecten van de monumentenzorg. Deze publicatie is bedoeld om zo integraal mogelijk te voorzien in de behoefte aan informatie over de toepassing van kalkmortels in de monumentenzorg. Zo wordt onder andere het compatibiliteitscriterium en de aandacht voor het vakmanschap als aspect van authenticiteit in het kader van het gebruik van kalk toegelicht.

De basis van dit boek is gelegd door een brede werkgroep. Naast vertegenwoordigers van de aannemerij bestond deze groep uit architecten, onderzoekers, adviseurs en deskundigen bij de producenten en leveranciers van kalk. Uit deze brede groep is vervolgens een redactie gevormd, bestaande uit Prof. Dr. Ir. Arch. Koen van Balen (Katholieke Universiteit Leuven, voorzitter), Ing. Bert van Bommel (Rijksgebouwendienst, secretaris), Ir. Rob van Hees (TNO Bouw), Drs. Jeroen van Rhijn (Rockview Gesteente Expertisebureau) en Matth van Rooden en Ir. Michiel van Hunen (Rijksdienst voor de Monumentenzorg). De coördinatie was in handen van Drs. Frans van der Helm (Rijksdienst voor de Monumentenzorg). De redactie heeft bij haar werk dankbaar gebruik gemaakt van informatie en commentaar van Dr. Geol. Kristof Callebaut (oud medewerker Katholieke Universiteit Leuven), Ing. Loek van der Klugt (oud medewerker van TNO Bouw) en Ir. René van der Loos (Nederlands Instituut voor Bouwbiologie en Ecologie).

De redactie had tot taak het door de werkgroep verzamelde materiaal te bewerken en waar mogelijk de geconstateerde kennisleemten op te vullen. Het resultaat, het voorliggende boek, is geschreven voor onderzoekers, monumentenwachters, ontwerpers, bestekschrijvers, uitvoerders en aannemers en voor het onderwijs. Het beperkt zich daarbij niet alleen tot de restauratiepraktijk. Hoewel de aandacht toegespitst is op de monumentenzorg zal de aandachtige lezer merken dat de informatie ook van nut kan zijn voor de rest van de bouwpraktijk: de renovatiesector en de nieuwbouw. Dit illustreert dat het gebouwde erfgoed – waarvan de betekenis vanuit verschillende invalshoeken kan worden bekeken – een ongelooflijke rijkdom aan informatie bevat en zijn nut kan hebben in de speurtocht naar principes en oplossingen voor milieubewust en duurzaam bouwen.
1 Kalk, ethiek en ecologie

1 Kalkmortels

Het laatste decennium raakt kalk als bindmiddel voor mortel stilaan uit de vergetelheid. Na ook daar vrijwel geheel verdwenen te zijn, zien we met name in de restauratie- en de renovatiesector het gebruik van deze mortel tegenwoordig weer langzaamaan toenemen. Door deze belangstelling komt ook aan het licht, dat er nogal wat verwarring heerst in het woordgebruik rond kalk. Het is daarom nuttig om aan het begin van dit boek met enkele definities duidelijkheid te scheppen. Daarbij plaatsen we kalk tegenover andere bindmiddelen, zoals het tegenwoordig veel bekendere portlandcement.

Hoewel vandaag de dag de gemiddelde bouwvakker kalk nauwelijks meer kent, is kalk gedurende lange tijd het belangrijkste bindmiddel in de bouw geweest. Ons culturele erfgoed is er grotendeels mee opgetrokken. Door kalk te situeren ten opzichte van de bindmiddelen die thans meer gangbaar zijn kunnen we beter ingaan op het gebruik van kalk vroeger en nu.

1.1 Bindmiddelen voor mortel

Voor de aanmaak van mortel wordt een bindmiddel vermengd met een granulaat en eventuele toeslagstoffen. In de meeste gevallen is dat granulaat een inert materiaal dat niet reageert met het bindmiddel en de rol heeft van skelet. Puzzolane toeslagstoffen zoals tras (zie hoofdstuk 3 § 2.3 en § 2.4) zijn niet inert en kunnen reageren met kalk. Daarom moet men onderscheid maken tussen de eigenschappen van het bindmiddel en de eigenschappen van de mortel. In wat hier volgt zullen we het hebben over de eigenschappen van bindmiddelen, in hoofdstuk 3 zullen ook de puzzolane toeslagstoffen aan de orde worden gesteld.

De belangrijkste bindmiddelen voor metsel- en voegmortel zijn kalk en cement. Tegenwoordig is cement het bekendst en wordt het ook het meeste gebruikt. Kalk werd in België nog tot vlak na de laatste wereldoorlog voor metselmortel gebruikt, soms in de vorm van luchthardende kalk en meestal in de vorm van hydrau-
lische kalk. Thans wordt kalkhydraat daar soms nog gebruikt in bastaardmortels (mortels die verschillende bindmiddelen, bijvoorbeeld zowel kalk als cement, bevatten). Een onderzoek heeft aangetoond dat deze bastaardmortels in veel gevallen voor duurzamer metselwerk garant staan dan zuivere cementmortels omdat het metselwerk meer vervormbaar is. De verbeterde verwerkbaarheid van de mortel zorgt voor een grotere waterdichtheid van het voegwerk en voorts verleent kalk de mortel zekere zelfhelende eigenschappen.

Ook in Nederland is thans bij gebruik van kalk doorgaans sprake van bastaardmortels. Dat kalk in Nederland ruimer toepassing vindt dan in België komt vooral omdat men ook in de nieuwbouw vaak kalk toevoegt aan cementmortel. Dit heeft onder andere te maken met de grovere korrelverdeling van het zand dat in Nederland wordt gebruikt voor het metselen. Grovere zandoorten hebben de neiging de mortel snel te laten segregeren, waardoor de verwerkbaarheid sterk vermindert. Dat kan verholpen worden door het toevoegen van fijne deeltjes met een grote specifieke oppervlakte zoals bijvoorbeeld kalk (zie tabel 1). De kalk fungeert dus vooral als leverancier van fijne deeltjes ten behoeve van de verwerkbaarheid. In België is het metselzand in het algemeen veel fijn. Bovendien bevat het veelal kleideeltjes. Daar is het toevoegen van kalk als supplement voor de ontbrekende fijne fractie dus niet nodig.

Wanneer in Nederland kalkmortels worden voorgeschreven (vooral bij restaurants), wordt men haast gedwongen om tenminste een mespuntje cement aan de mortel toe te (laten) voegen (en dat mespuntje blijkt vaak tamelijk groot te zijn). Haast niemand lijkt meer te geloven dat met alleen kalk, zand en water ook een goede mortel gemaakt kan worden, ook al hebben we eeuwen lang niets anders gedaan.

In de in Nederland gebruikte pleistermortel werd luchthardende kalk toegepast tot in de jaren zestig van de vorige eeuw. Daarna werd de kalkpleister verdrongen door de modernere kant-en-klar (gips)pleisters. Voor sommige toepassingen, zoals in vochtige ruimten, wordt evenwel vandaag de dag nog steeds pleistermortel op basis van kalk aangeraden, aangezien de mortel die ermee wordt vervaardigd veel minder hygroscopisch is dan de hedendaagse gipspleisters.

Kalk, ethiek en ecologie

Verschillende kalksoorten

Er bestaan verschillende soorten kalk: vette (of zuivere) en magere (of onzuivere) luchthardende kalk en daarnaast sterker of zwakker hydraulische kalk.

Zuivere luchthardende kalk (kalkhydraat of calciumhydroxide) wordt gemaakt uit nagenoeg zuivere kalksteen of een schelpenmassa (calciumcarbonaat) die in een kalkoven wordt gebrand. Daardoor wordt deze grondstof omgezet in ongebluste kalk (calciumoxide). Daarna wordt dit product geblust en zo omgezet in gebluste kalk (calciumhydroxide).

De begrippen vette kalk en magere (of schrale) kalk leiden overigens nogal eens tot verwarring. Ze werden bijvoorbeeld ook aan de uitlevering (de mate waarin men zand aan kalk kan toevoegen waarbij de verse mortel nog een samenhangend en plastisch geheel blijft) van kluitkalk gekoppeld (hoe meer uitlevering, hoe vetter; dit houdt verband met de zuiverheid van de kalk en de grootte en vorm van de kristallen) of aan de fijnheid van het product (hoe fijner, hoe vetter de kalk aanvoelt).

Deze twee soorten kalk noemen we luchthardende bindmiddelen omdat ze uitharden onder invloed van een reactie van het bindmiddel met koolzuurgas in de lucht. Deze reactie wordt carbonatatie genoemd. We zullen daar later dieper op ingaan.

Hydraulische kalk heeft hydraulische eigenschappen, dit wil zeggen dat een dergelijke kalk voor een belangrijk deel kan uitharden door vermenging met water, zonder dat er andere reactieve bestanddelen aan toegevoegd moeten worden en zonder dat er koolzuurgas moet kunnen toetreden. De tweede betekenis van hydraulisch is: kunnen uitharden onder water.²

De kalksteen waarmee hydraulische kalk wordt vervaardigd bevat minstens 9 tot 12 % kleiachtige elementen. Voor de bereiding van hydraulische kalk wordt de (kleirijke) kalksteen of het mengsel van kalksteen en kleiachtige bestanddelen verhit tot een temperatuur, hoger dan 900 °C (thans vaak 1000 tot 1100 °C). De hoeveelheid

water die vervolgens nodig is voor het blussen is afhankelijk van het gehalte aan vrije kalk (calciumoxide). Bij het blussen moet men die hoeveelheid nauwkeurig afpassen. De hydraulische componenten mogen immers nog niet met het water reageren, terwijl het calciumoxide moet worden geblust tot calciumhydroxide. Typisch voor hydraulische kalk is dat de mortel die ermee wordt vervaardigd sneller uithardt dan die met luchtkalk.

De huidige Europese norm EN 459-1 voorziet in de definitie van verschillende soorten luchtkalk en hydraulische kalk. De definities zijn echter onvoldoende genuanceerd. Er wordt bijvoorbeeld onvoldoende onderscheid gemaakt tussen de verschillende soorten hydraulisch verhardende verbindingen. Het verschil tussen hydraulische kalk en cement wordt nu juist voor een belangrijk deel bepaald door verschillen tussen de hydraulisch verhardende verbindingen in deze bindmiddelen.

Het verschil tussen kalk en cement

De binding van hydraulische kalk verloopt veel sneller dan die van luchtkalk, maar toch (veel) trager dan de binding van portlandcement. De belangrijkste hydraulisch reactivie component van hydraulische kalk is C₂S (dicalciumsilicaat). Die vorm reageert trager dan C₃S (tricalciumsilicaat) en C₃A, (tricalciumalluminaat), de voornaamste componenten van portlandcement. Bovendien bevat elke hydraulische kalk meer of minder (luchthardende) calciumhydroxide. Portlandcement wordt verkregen door het branden van een mengsel van kalksteen en klei bij temperaturen van minimaal 1250 °C, in de praktijk van 1450 °C als het om grijze portlandcement gaat en 1600 °C in het geval van wit portlandcement.

De formules C₂S, C₃S en C₃A zijn overigens geen echte chemische formules, maar typische verkorte aanduidingen uit de morteltechnologie. In werkelijkheid zijn de chemische aanduidingen van deze calciumverbindingen veel complexer. In hoofdstuk 3 worden de volledige formules weergegeven.

Er bestaan verschillende soorten cement en ze kunnen ook op verschillende wijzen worden ingedeeld. We geven in dit boek over kalk als referentie enige informatie over cement en wel met name over portlandcement.

In 1824 werd een patent verleend voor portlandcement. Dit bindmiddel is ontstaan uit de ontdekking en de ontwikkeling van Parker’s cement, ook wel Romeins cement genoemd (zie hoofdstuk 2 § 2.8), vanaf 1796 in Engeland en Frankrijk. Voor de bereiding van portlandcement worden hogere gehalten aan kleiachtige bestanddelen gebruikt en wordt het mengsel tot sinteren gebrand op temperaturen die hoger liggen dan 1250 °C. Het product dat door het branden ontstaat noemen we de klinker. Deze klinker moet worden gemalen om te kunnen reageren met het
water en te zorgen voor de binding in de mortel. Daarin ligt een groot verschil met het Romeinse cement uit de klassieke oudheid, dat de *inspiratiebron* voor de ontwikkeling van portlandcement vormde.

Naar mate de klinker fijner wordt gemalen zal het cement dat daaruit ontstaat ook sneller verharden. Dat heeft te maken met het oppervlak van de cementdeeltjes. Het totale oppervlak van alle cementdeeltjes in één kilogram fijngemalen cement is immers hoger dan het totale oppervlak van alle cementdeeltjes in één kilogram grofgemalen cement. De verharding vangt aan op het oppervlak van de cementdeeltjes en zal daarom bij fijngemalen cement sneller verlopen dan bij grofgemalen cement. Het onderscheid in cementklasse heeft onder andere hiermee te maken. Overigens is het voor een goed begrip nodig om er op te wijzen dat kalk uit nog veel kleinere deeltjes bestaat dan cement. In tabel 1 is dit weergegeven. Daarin is ook het stortgewicht vermeld. Dat is vooral van belang als men recepten in volumedelen wil omrekenen naar recepten in gewichtsvoordeelheden. Wij hanteren hier de traditionele gebruikte volumeverhoudingen, in de moderne morteltechnologie rekent men doorgaans met gewichtsverhoudingen. Kalk is in dergelijke recepten doorgaans aangegeven in de vorm van kalkdeeg: kalkhydraatpoeder met 40 tot 50 % water. De volumieke massa daarvan bedraagt circa 1 200 tot 1 400 kg/m3.

In de rechter kolom van tabel 1 zijn de blainegetallen aangegeven. Het blainegetal is het gezamenlijke oppervlak van de korrels in vierkante meter per kilogram materiaal. Hoe groter het blainegetal is, des te kleiner is de gemiddelde korrel.

Tabel 1

<table>
<thead>
<tr>
<th>Materiaal</th>
<th>Stortgewicht kg/m3</th>
<th>Specifiek oppervlak (Blainegetal) m2/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalkhydraatpoeder</td>
<td>500 - 600</td>
<td>1000 - 5000**</td>
</tr>
<tr>
<td>Cement</td>
<td>1100 - 1200</td>
<td>270 - 550</td>
</tr>
<tr>
<td>Zand</td>
<td>1450 (1300 - 1500)</td>
<td>***</td>
</tr>
<tr>
<td>Tras</td>
<td>900 *)</td>
<td>500-800</td>
</tr>
</tbody>
</table>

** Bron: Schiele 1972**

*) Het stortgewicht van tras is een grove inschatting.

**) Bij recente onderzoeken is vastgesteld dat het Blainegetal van kalkhydraatpoeder, in afwijking van de opgave van Schiele, wel 10.000 tot 40.000 m2/kg kan bedragen. Maakt men van dit poeder een kalkdeeg, dan is na een week het Blainegetal ongeveer 1$^{1/2}$ maal toegenomen.

***) Niet op te geven, omdat zand gebruikt voor mortels in het algemeen verdeeld is over fracties van verschillende korreldiameter. Het specifiek oppervlak hangt verder af van zandsort en vorm van de korrels.
1.2 Van kalkhydraat tot klei: een waaier aan bindmiddelen

Men kan de grondstoffen voor de bindmiddelproductie ordenen in een reeks met een afnemend gehalte aan calciumoxide en een toenemend gehalte aan klei. Zo ontstaat een waaier die verloopt van 100% zuivere kalksteen (zuiver calciumcarbonaat) tot een kleimergel met slechts 25% kalk en wel 75% klei. Voor de volledigheid kan die waaier doorgetrokken worden tot een 100% zuivere klei, al kan men van dat laatste geen bindmiddel meer maken. Figuur 1 bovenaan is een voorstelling van deze waaier van grondstoffen. Onder in deze figuur zijn de ermee corresponderende producten weergegeven. Naar de kalk-kleiverhouding verloopt deze waaier van zuivere luchtkalk, via hydraulische kalk naar portlandcement (voor de volledigheid aangevuld met grondstoffen voor producten van gebakken klei). Het komt overeen met een ordening van de bindmiddelen van een zuiver luchthardend, relatief traag reagerend bindmiddel naar een volledig hydraulisch en snel verhardend bindmiddel. Toename van hydrauliciteit en snelheid van de reactie hangt dus samen met een stijgend aandeel hydraulische componenten in de vorm van *kleiachtige* bestanddelen tegenover een dalend aandeel kalkhydraat.

Maakt men onderscheid tussen de concentratie siliciumoxide (SiO$_2$) enerzijds en aluminiumoxide (Al$_2$O$_3$) en ijzeroxide (Fe$_2$O$_3$) anderzijds (de hydraulische componenten in het bindmiddel) en neemt men de concentratie kalk als derde grootheid, dan kan men een driehoekig diagram opstellen waarin de verschillende bindmiddelen voor mortel staan afgebeeld. Uit deze voorstelling wordt ook duidelijk dat

![Diagram van grondstoffen en bindmiddelen](image)

Figuur 1

De verschillende typen grondstoffen en in vergelijking daarmee de verschillende typen bindmiddelen naar hun samenstelling in schema weergegeven.
het vermengen van bepaalde componenten kan leiden tot een mortel met een zeke-
re graad aan hydrauliciteit. Zo kan men zuivere luchtkalk vermengen met een in
onze streken vaak gebruikt puzzolaan als tras. Dit leidt tot een chemische samen-
stelling die zeer nauw aansluit bij die van bijvoorbeeld hydraulische kalk. Op de-
zelfde wijze wordt duidelijk dat men een hydraulische kalk kan bereiden door kalk-
steen en kleiachtige bestanddelen te mengen en samen te branden (bij een tempe-
ratuur, lager dan 1250 °C) (figuur 2).

Hydraulische kalk onderscheidt zich van andere hydraulische bindmiddelen
zoals cement niet alleen door de chemische samenstelling van de grondstof maar
vooral door de overheersende aanwezigheid van dicalciumsilicaat (C\textsubscript{2}S). Bij cement
is het overheersende bindmiddel tricalciumsilicaat (C\textsubscript{3}S)). Hoewel dat niet als zoda-
nerg in de definitieve uitgave van de Europese Norm wordt vermeld, is ook de
brandtemperatuur en de daarmee gepaard gaande overheersende vorm van de cal-
ciumsilicaatverbindingen bepalend voor het onderscheid tussen hydraulische kalk
een cement. (Zie de voorafgaande paragraaf *verschil tussen kalk en cement*.)

Andere kalkvarianten

In sommige publicaties worden
steenkalk en schelpkalk als kalkva-
rienten beschreven. Wij gaan er-
van uit dat het telkens om kalk
gaat maar dat de grondstof waaruit
de kalk wordt geproduceerd in het
ene geval kalksteen is en in het
andere geval bestaat uit schelpen
die men uit zee wint. Qua eigen-
schappen zijn dit feitelijk geen kalkvarianten, aangezien er che-
misch geen fundamentele ver-
schillen tussen de materialen be-
staan. De productiewijze en de
samenstelling en kristalgrafische
eigenschappen van de grondstof-
fen hebben een invloed op de
uiteindelijke eigenschappen van de
kalk. Diverse publicaties wijzen op
dit verschil waardoor mortelsa-
menstellingen afhankelijk worden

![Figuur 2](image)

De waaier aan bindmiddelen. Schema van de
verschillende bindmiddelen naar hun gehalte
aan calcium- en magnesiumoxide, siliciumoxi-
de en aluminium- en ijzeroxide.
1 = Puzzolanen
2 = Hoogovenslakken
3 = Hoogovencement
4 = IJzer portlandcement
5 = Portlandcement
6 = Kalk
gesteld van de kalksoort en bepaalde kalksoorten niet geschikt bevonden worden voor een of andere toepassing.

In mineralogisch opzicht is er zeker sprake van een belangrijk verschil, aangezien kalksteen bestaat uit het mineraal calciet en schelpen uit aragoniet. Eenmaal gebrand kan men dit onderscheid tussen steenkalk en schelpkalk echter nauwelijks maken, omdat zowel calciet als aragoniet dan zijn omgezet in het amorfe calciumoxide. De verschillen in eigenschappen (verwerkbaarheid, de tijd nodig voor verharding) worden niet zozeer bepaald door het gegeven of sprake is van schelpkalk of van steenkalk, maar vooral door factoren als de zuiverheid en met name ook de mate van fijnheid. Hiervoor werd over cement al opgemerkt dat een fijngemalen cement sneller zal reageren dan een grofgemalen cement; dezelfde redenering gaat onverkort op voor kalk. Een fijne kalk reageert sneller dan een grove. Dit maakt voor een deel ook het onderscheid uit tussen de kalk die vroeger in de bouw werd toegepast en de kalk die tegenwoordig beschikbaar is. De laatste is aanmerkelijk fijner. Overigens lijken er wel geringe verschillen te zijn tussen schelpkalk en steenkalk, die mogelijk zijn terug te voeren op de verschillende grondstoffen. Bij gebruik in onder andere gaswasinstallaties neemt schelpkalk een groter volume zuur gassen op en ontstaat minder snel verstopping, dan wanneer steenkalk wordt gebruikt. Dit komt, zo wordt gezegd, omdat de kalkdeeltjes van schelpkalk na het branden wat poreuzer en meer bolvormig zijn dan die van steenkalk. Of die wat andere eigenschappen ook van invloed zijn bij de toepassing in metsel- of voegmortels is echter nog niet vastgesteld.

Waar we hier over kalk spreken bedoelen we steeds kalk die bestaat uit calciumoxide en (bij hydraulische kalk) calciumsilicaat. Afhankelijk van de chemische samenstelling van de grondstof (kalksteen) kunnen ook andere kalksoorten onderscheiden worden. Wanneer een natuursteen ook magnesiumcarbonaat bevat, spreken we over magnesiumkalk of dolomietkalk. Het zijn grondstoffen met een andere kristalstructuur en een andere chemische samenstelling en de daaruit geproduceerde bouwkalk heeft andere eigenschappen. Het gaat in dit geval dus om een kalkvariant.

Magnesium- en dolomietkalk worden in België en Nederland relatief weinig verhandeld voor bouwtoepassingen. Dit in tegenstelling tot bijvoorbeeld Italië en de Verenigde Staten van Amerika, waar dolomietkalk ruim op de bouwmarkt be-

3 Zie bijvoorbeeld Voorschriften 1882 en NEN-Normblad V 1592. Er is nog discussie over de feitelijke verschillen tussen de kalkhydraat geproduceerd uit schelpen en die geproduceerd uit kalksteen.

4 V.m. R. Crèvecœur.
schikbaar is. Dat heeft wellicht te maken met de grotere voorraad aan dolomietstenen in die landen. Een belangrijk verschil tussen de kalk uit onze streken en dolomietkalk is dat magnesiumhydroxide trager verhardt dan calciumhydroxide.

2 Restauratie met kalkmortel

Denken en discussiëren over de instandhouding van erfgoed (*instandhoudingsfilosofie*)\(^5\) stelt ons in staat om beter te begrijpen waarom we erfgoed in stand willen houden. Voor de praktijk van de monumentenzorg is een specifieke onderdeel hiervan, de *ethiek (van de instandhouding)* vooral van belang. De ethiek houdt zich immers bezig met de vraag, wanneer we goed doen en wanneer fout. In een boek over metsel- en voegmortels kunnen we niet om de vraag heen, of het goed of fout is, om al dan niet een (bepaalde) kalkmortel toe te passen. Zowel in dit eerste hoofdstuk als in hoofdstuk 5 besteden we daarom ruimschoots aandacht aan de ethiek van de instandhouding.

2.1 Behoud van waarden

Een bekend kinderspelletje is het fluisterend in een kring doorgeven van een zin. Aan het eind van de kring blijkt de tekst steevast grondig af te wijken van de strofe die door het eerste kind is geïntegreerd. Door elkaar opvolgende kleine wijzigingen kan een boodschap uiteindelijk volledig worden verbasterd. Toch zijn we ons daar maar zelden van bewust.

Ook bij het onderhoud en herstel van monumenten blijken we maar al te vaak kleine wijzigingen, vaak onbewust, als vanzelfsprekend te accepteren. Daardoor kunnen monumenten ook zonder ingrijpende restauraties in de loop der tijd ingrijpend veranderen.

We behouden monumenten, omdat deze een bepaalde waarde voor ons vertegenwoordigen. Het perspectief van waaruit men een monument beschouwt, is in hoge mate bepalend voor de waarde die men aan het monument toekent. Het is evident dat die waarde anders is voor de gemiddelde, door een historische stad wandelende toerist dan voor een in historische materialen geïnteresseerde bouwhistoricus. Voor de een is het monument een fraai onderdeel van een historische en daarom aange-

\(^5\) Vaak spreekt men van *restauratiefilosofie*. Dat is echter een te beperkte term, want het gaat immers niet alleen om restauraties, maar ook om bijvoorbeeld bescherming, onderhoud en gebruik. Hier is gekozen voor de term *instandhoudingsfilosofie* en *ethiek van de instandhouding*, maar er bestaat nog geen algemeen aanvaarde terminologie. Evengoed zou men dus ook kunnen spreken over bijvoorbeeld *erfgoedfilosofie* en *ethiek van het erfgoed*.
name omgeving, terwijl de ander een vergrootglas pakt om een voegje of steen te bestuderen. Een geïnteresseerde in architectuurgeschiedenis kan vooral belangstelling hebben voor het gave (oorspronkelijke) beeld dat door de ontwerper is bedoeld. Anderen zullen juist het historische document waarderen, dat het gebouw door alle aanpassingen in de loop der tijd is geworden. Aan een monument kunnen daarom vele verschillende waarden worden toegekend. Al deze waarden verdienen erkenning als aspecten van de authenticiteit. Die authenticiteit strekt zich – zo leren we uit de recente discussies – bovendien verder uit dan alleen tot hetgeen, dat door het materiaal wordt vertegenwoordigd. Belangrijk is bijvoorbeeld ook, dat het monument blijft leven en een rol binnen de gemeenschap vervult. Het kan niet bewaard worden als een voorwerp in een museum. Het zal – uiteraard met respect voor en behoud van de monumentale waarden – telkensmaal worden aangepast en moeten worden onderhouden. Onvermijdelijk zal daarbij soms authentiek materiaal verloren gaan, bijvoorbeeld door hervogwerk. De vraag is niet zozeer of dit acceptabel is (het is vaak onvermijdelijk), maar aan welke condities dergelijke ingrepen moeten voldoen.

Cultuurwaardenonderzoek

Bij elke ingreep aan een monument zal men moeten starten met de waardestelling: een onderzoek naar de waarden die aan het monument kunnen worden toegekend. Behoud van monumenten is immers gericht op het laten voortbestaan de authenticiteit, die door die waarden wordt bepaald. Elke ingreep (en ook elk onthouden van een ingreep) heeft effect op die waarden en dwingt ons om een keuze te maken waarbij sommige waarden zullen worden gekoesterd terwijl andere daar onvermijdelijk onder te lijden zullen hebben.

In een concreet geval, een met een oude, in kalkmortel opgetrokken muur met in kalkmortel afgewerkte voegen, zit een deel van de waarden opgesloten in dat materiaal. Als we, met een nauwkeurigheid die in de praktijk gebruikelijk noch realiserbaar is, de mortel en de toepassing ervan zouden analyseren, dan kunnen we met de ons ten dienste staande wetenschappelijke analysetechnieken al veel achterhalen. Zo kunnen we te weten komen wat de receptuur van de mortel en mogelijk wat de herkomst en de bereiding van de toegepaste materiaalcomponenten was. Ook kan de oorspronkelijke bewerking worden geanalyseerd, wat ons inzicht geeft...

6 Authenticiteit hier opgevat als *de waarde die aan het monument als erfgoed wordt toegekend*. Zie Van Bommel 2002. (Dit in tegenstelling tot de betekenis van het begrip *authenticiteit* als (slechts) dat wat *oorspronkelijk* is.) Dit is verder uitgewerkt in Van Bommel 2003 I.
in de werkwijze van de ambachtslieden. Komende generaties, die wellicht over meer geavanceerde technieken beschikken, zullen er nog meer aan kunnen aflezen. Er zijn derhalve ook gegevens (waarden) in het materiaal opgeslagen, die we thans nog niet kunnen bepalen. Al met al is dit een pleidooi om het authentieke materiaal, zo dit maar enigszins mogelijk is, onaangeroerd te handhaven.

Waarden uit esthetisch perspectief

Een voeg is een belangrijk, maar anderzijds ook ondergeschikt aspect van het metselwerk. Als we ons afvragen wat de waarde is van de mortel die we geheel of gedeeltelijk moeten vervangen, speelt daarom ook het esthetisch perspectief een belangrijke rol. De kleur, textuur en vorm (wijze van afwerking) moeten passen in de gevel of het gedeelte van de gevel waar de mortel toepassing vindt. Elk monumentaal pand werd indertijd in een architectonische stijl en volgens de traditie gemaakt, met toen gebruikelijke bouwtechnieken. De stijl en de varianten die vaak werden toegepast, alsmede de keuze van de materialen en hun kleuren, de kwaliteit van de uitvoering, maar ook de ligging en de omgeving, bepalen de uitstraling van het gebouw. Het gebouw ontleent zijn betekenis voor een belangrijk deel aan die uitstraling, aan het uiterlijk ervan. Dat is in elk geval het meest openbare kenmerk van een monument. Hoewel de uitspraak dat behouden vóór vernieuwen gaat7 inmiddels algemeen geaccepteerd is, mag authenticiteit tegenwoordig niet meer gelijkgesteld worden met uitsluitend het oude materiaal.8 Uiteraard zal het conserveren van die materialen de eerste bedoeling moeten zijn. De oorspronkelijke materialen en de daarop uitgevoerde bewerkingen zijn immers belangrijke documenten, die een schat aan kennis en de waarden van het erfgoed in zich houden. Gelijktijdig gaat het echter ook om het behoud van de totale gevel en het totale monument in al hun

7 *Grondbeginselen 1917 en Wielinga 1990.*

8 Het gaat in de monumentenzorg om het behoud van wat we de authenticiteit noemen, dus van waarden. Het behoud van materiaal is daarom niet het doel van monumentenzorg; wel is het behoud van materiaal een belangrijk middel om de authenticiteit te behouden.
De oorspronkelijke materialen zijn in de loop van de jaren vaak aanmerkelijk veranderd. Die veranderingen zijn het gevolg van aantastings- en verouderingsprocessen. Daarnaast is er ook nogal eens sprake van menselijk ingrijpen, zoals latere afwerking in verf of juist het later verwijderen van oorspronkelijk aanwezige verflagen of van oorspronkelijk kalei- of pleisterwerk en – met name in de recente decennia – van het reinigen van gevels (niet zelden met desastreuze gevolgen voor het materiaal). Behalve de wijziging van het uiterlijk van het gebouw zelf speelt voor het uiterlijk dat we met een ingreep willen realiseren ook de omgeving van het monument een rol. Die zal in de loop der tijd immers ook een geheel andere geworden zijn, vooral in steden, waar veel interactie is tussen samenleving en het architectonisch erfgoed. Zo is er – om maar één voorbeeld te noemen – vanuit het oogpunt van monumentenzorg veel voor te zeggen om het patina van een vergrijsde gevel te respecteren, maar wanneer alle overige gevels in de directe omgeving in de loop der tijd zijn gereinigd, zou een niet-gereinigde – in zijn ouderdom gerespecteerde – gevel wel eens een in negatieve zin opvallende vreemde eend in de bijt kunnen zijn.

Om een nieuwe voeg te laten passen in het gevelbeeld (hem esthetisch compatibel te doen zijn) kan het nodig zijn om de voegmortel of de door te strijken met- selmortel op kleur te brengen met pigmenten zoals rode en gele oker en het voeg- of doorstrijkwerk op historisch verantwoorde en objectspecifieke wijze aan te brengen en af te werken. Hierbij rijst de vraag of de kleur van de restauratiemortel voor het doorstrijk- of het voegwerk met die van het verouderde materiaal overeen moet komen, of dat deze gelijk moet zijn aan de oorspronkelijke (niet verouderde) kleur. Er is veel te zeggen voor het laatste. Ook de nieuwe voeg zal na verloop van een aantal jaren verkleuren. De relatief korte tijd dat de reparaties opvallen is op het nagestreefde eeuwige leven van het monument maar een peulenschil. Kiezen we voor de kleur van de verouderde voeg, dan leggen we een claim op het werk van toekomstige restauratoren. Mochten deze bijvoorbeeld besluiten om de gevel te reinigen, dan zullen onze nieuwe voegen als storende elementen gaan opvallen. Het is daarom beter om zo nodig de nieuwe voegen achteraf iets bij te kleuren om ze beter te laten passen binnen het totaal van de vergrijsde gevel. Daarbij moeten we er uiteraard op letten, dat toekomstige restauratoren die behandeling desgewenst
weer ongedaan moeten kunnen maken. Voor het naderhand op kleur brengen van voegmortels kunnen minerale pigmenten worden gebruikt, opgeroerd in water.

De filologische aanpak

Behalve in concrete zin vertegenwoordigt het materiaal ook in overdrachtelijke zin waarden. Niet alleen het authentieke materiaal zelf heeft waarde, ook het feit dat met een kalkmortel (in engere zin, met een kalkmortel met bepaalde eigenschappen) is gewerkt, is op zichzelf van waarde. De verandering die het monument in de loop der tijd ondergaat is immers, wanneer een voeg in kalkmortel door een andere voeg in kalkmortel wordt vervangen, minder vergaand, dan wanneer een kalkmortel door een cementmortel wordt vervangen.

Op het moment dat de originele voegafwerkingen vervangen zijn, is hun waarde als getuigen van een zekere bouwtijd en situatie weg. Elke restauratie, zelfs indien deze in stijl is uitgevoerd, is het product van een bepaalde restauratieopvatting en een zeker niveau van (technische) kennis. Daarmee is ons nieuwe werk vooral een getuige uit de tijd van onze restauratie en niet uit de tijd van het oorspronkelijke werk. Desondanks gelden er steekhoudende argumenten om voegen bij een restauratie in stijl (als interpretatie van oud werk) uit te voeren. Niet alleen omdat we zo bepaalde aspecten van de authenticiteit kunnen ‘behouden’ (zoals vorm, kleur, textuur en materiaalsoort), maar ook omdat de voeg zijn rol speelt binnen de context van de historische gevel. Als de voeg past in het historische beeld van de gevel, behoudt de gevel als geheel een historisch correct beeld. Omdat restauraties ook aan andere eisen moeten voldoen, zijn compromissen echter niet altijd te vermijden.

Tot op zekere hoogte verdient het aanbeveling om voor het herstel van voegwerk te kiezen voor de zogenaamde filologische aanpak. Dit houdt in dat men de originele uitvoeringswijze en materiaalsamenstelling zo nauwkeurig mogelijk navolgt. Deze aanpak vereist een diepgaande bestudering van het onderhanden zijnde object en – zeker waar dit geen of weinig oorspronkelijk voegwerk meer bevat – van de wijze waarop vergelijkbare panden uit dezelfde tijd en omgeving werden gevoegd. Behalve op de bestudering van gebouwen moet dit onderzoek zo mogelijk ook betrekking hebben op andere bronnen, zoals oude bestekken en andere documenten. Met deze filologische aanpak kan een belangrijke daad worden

gesteld ten aanzien van de instandhouding van de *authenticiteit* van een monument.

Er is in dit verband nog discussie over het nut van het weer tot leven roepen van originele recepten en de authentieke ambachtelijke werkmethoden. De voorstanders hiervan betogen dat alleen daarmee de *homogeniteit* van de constructie kan worden bereikt. Maar de mortel moet ook in technisch opzicht passen binnen de gevel. Die is, na een lang *life in service*, door diverse behandelingen en door later in en op de materialen afgezette stoffen zoals vervuiling en zouten, ook niet meer gelijk aan het oorspronkelijke werk. Daarom hoeft een exacte imitatie van de oorspronkelijke voeg in de huidige situatie helemaal geen duurzame voeg meer op te leveren (hoeft hij technisch niet passend, niet *compatibel* te zijn).

Een exacte reconstructie kan ook strijdig zijn met de huidige uitstraling van het pand. Neem het geval dat het oorspronkelijk uiterlijk van een gebouw totaal veranderd is, bij voorbeeld vanwege een reconstructie in het verleden. Vaak kan dan beter het meer recente uiterlijk als referentie voor de restauratie gebruikt worden.

Voegen werden soms om esthetische redenen vervangen, bij voorbeeld om een mode te volgen. Waar dit ooit is gebeurd zijn wellicht juist die nieuwe voegen interessante historische documenten. Moet men dergelijke voegen vervangen, dan speelt dus de vraag welke voegen als voorbeeld voor een restauratie zouden moeten dienen: de oorspronkelijke of juist de meer recente voegen. Per geval zal het antwoord gezocht moeten worden. Dit is slechts één voorbeeld van de vele interessante vragen en dilemma’s waarvoor men bij een eenvoudig en allerdaags geachte handeling als het vervangen van voegwerk gesteld kan worden.

Een strikt filologische aanpak is overigens nauwelijks mogelijk. In het beste geval zijn de oude materialen moeilijk te vinden (althans, niet direct uit de handel te trekken). Bovendien is het de vraag hoe realistisch het is, om de ooit gebruikte fabricage- en bouwtechnieken weer tot leven te willen roepen.\(^\text{10}\)

\(^{10}\) Torsello 1998.
Het dynamische begrip authenticiteit

Aanvankelijk werd met authenticiteit vooral het oorspronkelijke voorkomen bedoeld. In de lange geschiedenis van de monumentenzorg zien we dat dit begrip een steeds ruimere en daarmee ook meer gecompliceerde betekenis heeft gekregen. Een belangrijke constante is echter, dat het steeds blijkbaar de authenticiteit is, die we met onze monumentenzorg willen behouden.\footnote{Authenticiteit ... blijkt de essentiële kwalificerende factor met betrekking tot de waarden te zijn. Slotdocument 1994. Zie ook: D. Bell 1997, p. 27-29.} Het vakgebied van de monumentenzorg ontleende bij de ontwikkeling van dat begrip veel aan de museumwereld.

Zonder verder in te gaan op deze discussie is het in dit verband van belang om te onderstrepen dat bijgevolg niet alleen het behoud van origineel materiaal van groot belang is, maar dat dit ook geldt voor de overlevering van het kunnen (savoir-faire) of de overlevering van het overeenkomstig uiterlijk. De overlevering van het kunnen veronderstelt dat er een voldoende werkaanbod moet bestaan om het vakmanschap te kunnen overleveren en dat veel aandacht moet worden besteed aan een goede documentatie van deze praktijk.

Savoir-faire

Het kunnen heeft dus ook zijn waarde en dit dus geldt ook voor het voortzetten van een traditie van uitvoering van kalkmorteltoepassingen. De kennis van kalkmortels en de vaardigheid om daarmee om te gaan zal daarom in stand moeten

12 Charter 1964.
worden gehouden en doorgegeven. Dat houdt in dat het mogelijk moet blijven om met kalkmortels te voegen en te metselen.

Vervangen van materiaal is bij monumenten – die aan weer, wind en gebruik zijn overgeleverd – vaak onvermijdelijk. Door het vervangende materiaal naar beste vermogen zo veel mogelijk op het oude te laten lijken en de oorspronkelijke verwerking en bewerking daarbij zo veel mogelijk te imiteren, wordt de verbastering van het totale monument zo veel mogelijk beperkt. Gelijktijdig neemt het mate waarin de savoir-faire wordt overgeleverd toe. Discussie blijft daarbij echter in hoeverre men de ingreep als een (al dan niet verwijderbare) retouche uit zal moeten voeren en in hoeverre de ingreep herkend moet kunnen worden als het gevolg van een restauratie en niet abusievelijk voor origineel werk zal kunnen doorgaan.

In verband met de instandhouding van historische ambachten en technieken moet wel een kanttekening worden gemaakt. Als we thans op achttiende-eeuwse wijze een muur metselen of voegen is en blijft het een interpretatie van een oude techniek vanuit hedendaags perspectief (het zogenaamde Van Meegereneffect). Bovendien is de rol die kalk in de hedendaagse restauratiepraktijk speelt sterk afgenomen, zodat het materiaal en de wijze waarop er mee omgegaan moet worden bij de meeste bouwvakkers niet meer bekend is. Het opnieuw opdoen van ervaringen met dit product is een conditio sine qua non om een vicieuze cirkel te doorbreken: het materiaal wordt nog maar nauwelijks toegepast, dus de kennis erover verdwijnt; men kent het materiaal nauwelijks en past het daarom niet toe. Helaas blijkt dat het aanbod aan werk in kalkmortel zodanig is afgenomen dat al nauwelijks meer sprake kan zijn van het voortzetten van een traditie. Willen we dat het betreffende vakmanschap opnieuw wordt ontwikkeld en er een situatie ontstaat waarin weer sprake kan zijn van de overlevering van het kunnen, dan kunnen we ons niet beperken tot instandhouding van de monumenten, maar zullen we doelbewust ook de traditionele ambachtelijke technieken als in stand te houden erfgoed moeten beschouwen en toepassing ervan moeten bevorderen of waar nodig opnieuw moeten invoeren.

14 Dit effect laat zich uitleggen aan de hand van de kwestie Van Meegeren, welke speelde vanaf 1937 toen het Museum Boymans een schilderij kocht van Johannes van Meegeren, in de overtuiging zich een schilderij van Johannes Vermeer te hebben aangeschaft. Van Meegeren en Boymans keken vanuit hetzelfde perspectief naar schilderijen van Vermeer, zodat Van Meegeren overtuigd was perfect in Vermeers stijl geschilderd te hebben en Boymans overtuigd was van de echtheid van het schilderij. Wie met ander (bijvoorbeeld hedendaags kunsthistorisch) perspectief naar het schilderij kijkt ziet een evidentie vervalsing. Zie: Van Bommel 2001 I.

2.2 Restaureren met oog op de toekomst

Nadat men in 1964 in Venetië een Charter16 had opgesteld, waarin de belangrijkste uitgangspunten voor het restaureren van monumenten zijn beschreven, is gewerkt aan principes, die daaraan invulling konden geven. Eén van de belangrijkste werd ontleend aan de museumwereld: het principe van de \textit{reversibiliteit} (omkeerbaarheid). Een restauratie kan immers achteraf op verkeerde keuzes gebaseerd blijken te zijn. Ook is het mogelijk dat een toekomstige generatie niet kan instemmen met onze zienswijze. De ultieme manier om daarmee rekening te houden is een aanpak die door latere generaties eventueel weer volledig ongedaan gemaakt kan worden.

Inmiddels wordt van dit principe in die zin afstand genomen, dat \textit{reversibiliteit} zondermeer een nastrevenswaardig, maar evenzeer een onbereikbaar ideaal is. Immers, om ons te beperken tot de restauratie van doorstrijk- en voegwerk, hoe zou men een door ons in het kader van herstel vervangen oorspronkelijke mortel weer terug kunnen brengen? Het is evenmin mogelijk als het terugbrengen van een verouderde vernislaag die bij een zogenaamde \textit{reversibele} restauratie van een schildderij is verwijderd. Dat wil overigens absoluut niet zeggen dat de gedachte achter het principe van de reversibiliteit niet meer geldig zou zijn. Het betekent alleen dat we andere wegen moeten zoeken om desondanks zo veel mogelijk aan de intentie ervan te voldoen. Daarom hanteren we aanvullende eisen. Die eisen zijn geformuleerd vanuit twee gezichtspunten, namelijk de gevolgen voor het authentieke materiaal en de gevolgen voor toekomstige restauratoren (onze ingreep als een erfenis voor latere restauratoren).

Hoewel \textit{reversibiliteit} nooit volledig is te bereiken, moet dus wel altijd naar een \textit{zo veel mogelijk reversibele} ingreep worden gestreefd.17 Daarnaast stellen zich echter ook andere principes, zoals het principe van de \textit{minimuminterventie}, van de \textit{compatibiliteit} en van de \textit{herbehandelbaarheid} (de constructie zal \textit{retreatable} (opnieuw te behandelen) en \textit{reparabel} (opnieuw te herstellen) moeten zijn).18

Een reversibele ingreep zou ons, zo wij een fout hebben gemaakt, tot op zekere hoogte van een verantwoordelijkheid ontslaan. Ieder na ons, die het beter meent te weten, kan immers onze ingreep ongedaan maken en het zelf beter doen. In de dagelijkse praktijk, waarbij het over herstel van voegen en inboeten van metselwerk

16 Charter 1964.
17 Van Bommel 2001 I.
18 Zie onder andere: Teutonico 1996.
gaat, zal echter maar in beperkte mate van reversibiliteit sprake kunnen zijn. Immers, hoe verwijderbaar onze ingreep ook zal zijn, het authentieke materiaal dat wij hebben wegenomen zal men nooit terug kunnen brengen. Desondanks zal het in kalkmortel metselen van de oude stenen doorgaans meer reversibel zijn dan het in een cementmortel verwerken van dezelfde stenen. Is het in het eerste geval zeer wel denkbaar het geheel te demonteren en de stenen na afbikken van de mortel opnieuw te gebruiken, in het laatste geval zal dat veel moeilijker, zo niet onmogelijk zijn. Hier ligt een onmiskenbaar verband met thema's uit duurzaam bouwen, die in § 3 aan de orde zullen komen. Het blijkt immers dat tweedehands bakstenen soms wel twee of drie gebouwen kunnen meegaan.

2.3 Gevolgen voor het authentieke materiaal

Het principe van de continue keuze

Om te beginnen zal men zoveel mogelijk moeten uitgaan van het principe van de continue keuze. Op elk moment kan men besluiten om al dan niet in een monument in te grijpen. Of men nu besluit om wel in te grijpen, of men besluit om niet in te grijpen, gevolg van die keuze zal altijd zijn dat een deel van de authenticiteit verloren zal gaan. Bij niet-ingrijpen is dat het gevolg van bijvoorbeeld verdergaande verwering, aantasting of slijtage, bij wel-ingrijpen is het een direct gevolg van ons handelen, waarbij authentiek materiaal verloren zal gaan. Van groot belang is het om het moment van ingrijpen verstandig te kiezen. We moeten daarbij uitgaan van het resultaat dat onze keuze per saldo op de lange duur zal hebben. Te vroeg ingrijpen zal betekenen dat we onnodig authentiek materiaal zullen aantasten, te laat ingrijpen zal betekenen dat als gevolg van degradatie onnodig authentiek materiaal aangetast zal worden.

Minimuminterventie

Indien we tot een ingreep besluiten, dan moeten we ons zo veel mogelijk beperken tot hetgeen echt noodzakelijk is (het principe van de minimuminterventie). Als het bijvoorbeeld om voegwerk gaat, is het verstandig om slechts de voegen te vervangen die ook daadwerkelijk aan vervanging toe zijn. Te vaak blijkt men in de praktijk er voor te kiezen om, indien een deel van de voegen slecht is, de gehele gevel te hervogen. Daarbij gaat niet alleen onnodig veel authentiek materiaal verloren. Het is bovendien inefficiënt, in de zin dat het veelal beter is de beschikbare middelen te

19 Van Bommel 2001 I.
Kalk, ethiek en ecologie

besteden aan een beperkte hoeveelheid nieuwe voegen, en zo een veel hogere kwaliteit te bereiken dan mogelijk zou zijn wanneer voor dezelfde middelen alle voegen vervangen zouden moeten worden. Vanuit het principe van de minimuminterventie kan men immers niet alleen redeneren dat een zo klein mogelijk gedeelte een behandeling moet ondergaan, maar ook dat het aantal behandelingen in de loop der tijd zo gering mogelijk moet zijn. Hierop wordt hierna, in de paragraaf Duurzaam herstellen, nader ingegaan.

Compatibiliteit

Daarnaast geldt het principe van de compatibiliteit, het vereiste dat de toegepaste materialen en technieken onder de gegeven omstandigheden moeten passen in zowel technisch als esthetisch opzicht.

De eis dat ingrepen technisch passend (compatibel) moeten zijn, houdt in dat men zal zich ervan moeten vergewissen dat de fysische en chemische processen die zich zullen gaan afspelen in de (nieuw te vormen) constructie niet negatief zullen uitpakken voor het authentieke materiaal en het behoud ervan zo min mogelijk zullen hinderen maar juist zo veel mogelijk bevorderen.

Als er in dit verband een keuze gemaakt moet worden tussen de duurzaamheid van het oorspronkelijke werk en de duurzaamheid van het bij de ingreep aangebrachte materiaal, dan prevaleert uiteraard het oorspronkelijke. Concreet betekent dit dat men beter een wat minder duurzame, zachte voeg aanbrengt als men daarmee de omringende oorspronkelijke (bak)steen beter in conditie kan houden dan met een dichtere, hardere en duurzamere voeg die mogelijk tot schade aan de oorspronkelijke (bak)steen kan leiden.

Het creëren van technische compatibiliteit stuit op enkele niet op te lossen problemen, waarvan de thermische compatibiliteit de grootste is. De lineaire uitzettingscoëfficiënt van baksteen is voor iedere soort een vaststaand gegeven en deze bedraagt meestal de helft van die van de meeste mortels. De lineaire uitzettingscoëfficiënt van mortels is op geen enkele wijze hieraan aan te passen. Het thermische gedrag van baksteen en mortel is derhalve niet identiek. Gelukkig blijkt dat mortel met kalk de vervormingen van de baksteen desondanks redelijk goed kan volgen omdat deze mortel relatief elastisch is en in die zin dus beter presteert dan de minder flexibeler cementmortels. Dit nieuw vastgesteld fenomeen is een belangrijke verklaring voor het verschil in duurzaamheid.

Kalkmortels blijken ook voor wat betreft het hygrisch gedrag veel beter aan te passen te zijn dan cementmortels. Dit komt doordat de mengverhouding van
bindmiddel en zand bij kalkmortels binnen veel ruimere grenzen gevarieerd kan worden. Moet een restauratiemortel (licht) waterdoorlatend zijn, dan impliceert dit de toepassing van een schralere mortel; niet waterdoorlatende mortels zijn anderzijds vette mortels.

Bij *drukbelasting* wordt het gedrag van metselwerk vooral bepaald door de vervormbaarheid van de mortel en niet door de sterkte ervan. De druksterkte van metselwerk hangt vooral af van de treksterkte van de baksteen. Daarom heeft het gebruik van de wat zwakkere en vervormbare kalkmortel maar zelden een negatieve invloed op het mechanisch gedrag van metselwerk.

De technische compatibiliteit van restauratiemortels wordt niet alleen verkregen door de compatibele samenstelling van de mortels. Tevens dient de verwerking tot compatibiliteit te leiden. De juiste wijze van voorbewerking, mate van verdichting en de juiste nazorg, waaronder het vochtig houden van de mortel, zijn in dit kader belangrijke aspecten.

Voor de principes van het samenstellen van technisch compatibele mortels wordt hier verwezen naar § 6 in hoofdstuk 3 en § 3.2 van hoofdstuk 5.

Duurzaam herstellen

Van Bommel 2001 II.
2.4 Ingreep als erfenis

Bij een ingreep in een monument gaat het er niet alleen om, wat deze ingreep betekent voor het monument zelf – in de zin dat deze ingreep het monument zo min mogelijk mag aantasten en zo min mogelijk tot aantasting van het monument mag (kunnen) leiden. Na ons zal een komende generatie, volgens haar eigen opvattingen, met dat monument verder moeten kunnen leven. Ruskin betoogde in 1849 – in *The seven lamps of architecture*\(^{21}\) – al, dat het monument niet van ons is, maar behalve aan haar scheppers *toebehoort aan de generaties die na ons komen*. Daarom moeten we niet alleen rekening houden met latere ingrepen, maar toekomstige generaties ook zo veel mogelijk de vrijheid geven om zelf de aard en hoedanigheid van die ingrepen te bepalen.

Een minimumeis die men in dit licht aan onze ingrepen zou moeten stellen is dat het mogelijk moet blijven om het monument (met een zo ruim mogelijke keuzevrijheid) te repareren, te behandelen en te onderhouden. Dit principe wordt aangeduid met termen als *herbehandelbaarheid* en *reparabelheid*.\(^{22}\) Verder is het ook nodig om onze ingrepen goed te dokumenteren (bijvoorbeeld in een verslag van een restauratie), zodat toekomstige restauratoren ook kunnen weten met welke eerdere behandelingen zij rekening moeten houden.

Herbehandelbaarheid

Hoe goed wij thans ook ons werk verrichten, onvermijdelijk komt er het moment dat iemand na ons opnieuw een ingreep zal overwegen. Opnieuw zal dan een waardestelling plaats vinden en ook zal weer naar de gevolgen voor het materiaal en voor toekomstige restauratoren worden gekeken. Het gebeurt dan echter vanuit een ander perspectief, namelijk dat van de dan betrokken beslissers. Ideaal zou het zijn, als een ingreep die in het verleden is gedaan desgewenst ongedaan gemaakt kan worden. Herbehandelbaarheid stelt zich hier in de plaats van het nooit volledig bereikbare ideaal van deze reversibiliteit.

Herbehandelbaarheid houdt feitelijk in, dat we zo veel mogelijk moeten voorkomen dat toekomstige restauratoren door *onze ingreep* voor problemen geplaatst worden; primair dienen wij met hen rekening te houden. Niet alleen moet een behandeling te herhalen zijn of moet het mogelijk zijn om bij beschadigingen reparaties uit te voeren, de toekomstige restauratoren moeten bovendien daarbij zo

\(^{21}\) Ruskin 1849

\(^{22}\) Van Bommel 2001 I, § 6.6 Schema van de driehoek (pp. 27-8).
veel mogelijk vrijheid van handelen hebben, dus ook andere methoden kunnen gebruiken dan wij doen of andere beslissingen kunnen nemen, dan die welke wij nu verstandig achten.

Vooral het toepassen van producten zoals hechtemulsies, steenversteigers en hydrofobeermiddelen is van grote invloed op de vrijheid die de toekomstige restaurateur heeft. In het materiaal opgenomen (resten van) dergelijke producten zijn niet te verwijderen en ze leggen een hypotheek op mogelijke behandelingen achteraf. Men moet daarom zeer terughoudend zijn bij het toepassen van dergelijke materialen. Ook voorbewerkingen van een ondergrond kunnen in deze zin van grote betekenis zijn. Brengt men bijvoorbeeld een pleisterlaag aan op schoon metselwerk door eerst de ondergrond ruw te hakken en er vervolgens een zeer goed hechttende cementpleister op aan te brengen, dan is de mogelijkheid om deze ingreep ongedaan te maken nihil. Wordt in plaats daarvan op een niet voorbehandelde ondergrond een veel minder sterke kalkpleister aangebracht, dan is wel sprake van een belangrijke mate van reversibiliteit.

Een vraag die ook met de herbehandelbaarheid samen hangt betreft de kleur, die we aan nieuw voegwerk moeten meegeven. Uit esthetisch oogpunt (zie § 2.1, Waarden uit esthetisch perspectief) willen we de kleur laten passen binnen het geheel van de vergrijsde, verouderde gevel. Als we dat doen door de mortel zelf te kleuren, dan beperken we daarmee de vrijheid van een toekomstige restaurator om een gevel eventueel te reinigen. Zoals in § 2.1 al is betoogd, is het met oog op de herbehandelbaarheid daarom beter, de voegen naderhand bij te kleuren op een wijze die door toekomstige restauratoren ongedaan is te maken.

Duurzaam herstellen

In § 2.3 is al aangegeven dat we, geredeneerd vanuit het principe van de minimum-interventie, moeten streven naar zo duurzaam mogelijk werk binnen de grenzen die daaraan worden gesteld door de compatibiliteit. Ook het werk van de toekomstige restaurator stelt daar echter grenzen aan. Er geldt immers ook, dat de door ons toegepaste mortel door de komende generatie gemakkelijk verwijderd moet kunnen worden, zodat men deze (bijvoorbeeld wanneer ze is beschadigd), zonder schade aan de andere componenten van het metselwerk toe te brengen kan vervangen. Ook vanuit het streven naar behoud van het authentieke materiaal kan worden betoogd dat een toe te passen mortel het zwakste element moet zijn, in de zin dat als er iets kapot gaat of aangetast wordt het niet het authentieke materiaal mag zijn, maar bij voorkeur de door ons later aangebrachte mortel. Dit is overigens absoluut geen vrijbrief voor het toepassen van (al te) zwak voegwerk, omdat hier tegenover
staat dat vanuit het principe van de *minimuminterventie* onze mortel immers zo duurzaam mogelijk moet zijn. Conclusie is dus dat het nieuwe voegwerk nooit zo sterk mag zijn dat het niet meer zonder schade aan het authentieke materiaal verwijderd kan worden of dat het *uit zichzelf* leidt tot schade aan het authentieke werk, maar dat de mortel binnen deze randvoorwaarden wel zo duurzaam mogelijk moet zijn.

Duurzaamheid is overigens niet écht een kenmerk van voegwerk. Hoewel er vele voorbeelden zijn van goed en zorgvuldig samengesteld en aangebracht voegwerk dat zelfs in weer en wind eeuwen heeft getrotsed, is bij veel monumenten het voegwerk in de loop der tijden vervangen. Het verschil kan in bepaalde gevallen toegeschreven worden aan de gebruikte materialen maar ook aan het verschil aan vakmanschap. Dat bleek bijvoorbeeld in Kinderdijk. De ernst van huidige vochtproblemen bij een aantal gelijktijdig gebouwde molens bleek daar verband te houden met het vakmanschap van de verschillende aannemers in 1738.\footnote{Groot 2002, p. 66.} Het is zeker mogelijk om tot (behoorlijk) duurzaam voegwerk te komen, maar om dit te bereiken is naast een verstandige keuze van een compatibele mortelsamenstelling vooral ook een zorgvuldige – doch arbeidsintensieve – werkwijze noodzakelijk;\footnote{Van Bommel 2001 II.} de uitvoering zal daarom in handen moeten zijn van vakbekwaam personeel.

Documentatie

Het is natuurlijk mogelijk om, indien men voor een probleem is gesteld, met wetenschappelijk onderzoek te achterhalen of er bepaalde behandelingen hebben plaatsgevonden en wellicht ook met welke middelen, welke mortelsamenstelling is gebruikt, wat de baksteenqualiteit is enzovoort. Veel van dit onderzoek is echter te voorkomen, door bij een ingreep helder en duidelijk de gegevens over werkwijzen, middelen en materialen vast te leggen.

Waar er een goed bestek van het werk is gemaakt, kan dat al veel informatie bevatten. Maar er staat niet in wat de alternatieven zijn, waarvoor uiteindelijk *op de steiger* wordt gekozen, net zo min als er iets in staat over vondsten (bijvoorbeeld de aard en staat van de metselmortel die achter voegmortel tevoorschijn komt). Dan zijn er nog leveranciers en uitvoerende bedrijven, die samenstellingen van producten *geheim* houden. Die samenstelling overigens niet zo heel erg geheim, want met laboratoriumonderzoek is ze zonder meer te achterhalen. Nu mag men
Kalkboek

voor de verantwoordelijke voor een restauratie de geheimen van die samenstelling eigenlijk niet verborgen houden, want hoe kan hij anders besluiten of het middel of materiaal in deze betreffende situatie het meest aangewezen is. Maar ook de noodzaak om al deze gegevens in een heldere documentatie van het uitgevoerde werk vast te leggen, pleit tegen het in stand houden van deze geheimen.

De documentatie zelf vormt aanvullend bewijsmateriaal met betrekking tot het monument en hoort daarmee feitelijk tot de authenticiteit ervan. Dat betekent dat de documentatie recht heeft op dezelfde bescherming als het monument waarop het betrekking heeft. Opname van de documentatie op een wijze waardoor het in de toekomst geraadpleegd kan worden, bij voorkeur in een openbaar bestand, is daarom noodzakelijk. Behalve in de archieven van betrokken restauratoren, bedrijven en eigenaren, zal het daarom ten minste in een documentatiebestand van de verantwoordelijke autoriteit op het gebied van monumenten moeten worden geborgen.

2.5 Van abstractie naar praktijk

Naar zijn aard is een betoog over de ethische kant van het restaureren van een hoger abstractieniveau dan het verhaal dat men tegen de metselaar of voeger op de steiger over zijn werk kan houden. Het perspectief van de ethicus is immers geheel anders dan van de ambachtsman. Toch zit er ook in dat laatste perspectief een aspect waarmee bij het eerste terdege rekening moet worden gehouden: het perspectief van de man of vrouw uit wiens of wier handen het werk uiteindelijk moet (kunnen) komen.

Een in ethisch en technisch opzicht volstrekt perfecte mortel of werkwijze, die de uitvoerende niet wil of kan toepassen (om uiteenlopende redenen, variërend van onwil en strijdigheid met de heersende gewoonte tot onwerkbaarheid of ander praktische bezwaren) zal nooit tot een bevredigend resultaat kunnen leiden. Ook het perspectief van de uitvoerende moet derhalve in de ethische discussie zijn plaats kunnen vinden.

2.6 Kalk en restauratie-ethiek

Het gebruik van kalkmortels kan grote voordelen hebben voor monumenten. Waar die monumenten vanouds in kalkmortels zijn gemetseld en gevoegd passen we ons aan het historische gegeven aan, dat we daardoor zo weinig mogelijk beïnvloeden. Ook het beeld tasten we nauwelijks aan: de kalkmortel zal op dezelfde wijze verouderen als de oude voegen. De chemische en fysische processen die in de muren spelen worden niet of nauwelijks verstoord door het nieuwe materiaal, dat immers zo veel mogelijk op het oorspronkelijke lijkt. De kans dat aangrenzend materiaal,
zoals bakstenen, kapot gaan is door de relatief geringe hechting en beperkte sterkte van de kalkmortel kleiner dan bij toepassing van gebruikelijke cementmortels. Mits we ons terdege rekenschap geven van aantastingsprocessen die spelen, kunnen we met kalk meestal een duurzame mortel maken. Talloze historische gebouwen bewijzen dat. Mocht er toch sprake zijn van aantasting, dan is de kalkmortel veel gemakkelijker te verwijderen dan de meeste moderne mortels. Er zullen natuurlijk altijd gevallen blijven waarin toepassing van kalkmortels niet verstandig is, bijvoorbeeld omdat deze niet zijn opgewassen tegen het aantastingsproces dat gaande is. We zullen dan mortels moeten gebruiken die wel tegen een grote hoeveelheid zouten, extreme vochtbelastingen of bijvoorbeeld specifieke vormen van chemische aantasting bestand zijn. In de meeste gevallen kan echter gebruik makend van luchthardende of hydraulische kalk en rekening houdend met de omstandigheden en de noden een aangepaste samenstelling voor de restauratiemortel worden gevonden.

Op de hier naar voren gebrachte technische en ethische aspecten zal in § 2 van hoofdstuk 5 – binnen het kader van de aan kalkmortel te stellen eisen – nader worden ingegaan.

3 Duurzaam bouwen met kalkmortel

3.1 Bepalen van het effect op het milieu

Voor het onderzoek naar milieueffecten van materiaaltoepassingen staan diverse instrumenten ter beschikking. De invalshoeken ervan zijn verschillend en de laatste discussie over wat nu de meest correcte methode is, is nog lang niet gevoerd. De meeste methoden gaan uit van een milieugerichte analyse van de levenscyclus van een materiaal: LCA (Life Cycle Analysis). Die analyse begint met de grondstoffen (en kijkt onder andere naar uitputting van grondstoffen en energiedragers) en de productie (met als belangrijke facetten de benodigde energie en de emissie van stoffen zoals rookgassen). Ook de verwerking op de bouwplaats en uiteindelijk de reststoffen (afval, herbruikbaarheid van afkomende materialen) spelen een rol in deze analyse.

Kalkboek

Om misverstanden te voorkomen is het nodig enige woorden te wijden aan de (vermeende) objectiviteit van LCA en subjectiviteit van het TWIN-model. Bij een LCA worden verschillende milieueffecten beoordeeld. Een objectieve LCA geeft als eindresultaat veertien verschillende scores. Om de resultaten inzichtelijk te maken worden deze effecten vervolgens gewogen bij elkaar opgeteld. In die weging speelt subjectiviteit een rol. Toch wordt dit resultaat (ten onrechte) vaak als een objectieve maatstaf gezien.

In het TWIN-model wordt een aantal milieueffecten waarvoor geen kwantitatieve beoordeling mogelijk is, op kwalitatieve wijze beoordeeld. Met behulp van getrapte schalen met kwalitatieve prestatieniveaus wordt hier een getalsmatige score aan gekoppeld. Deze score wordt opgeteld bij de andere scores. Wat dat betreft vinden er in het TWIN-model geen andere stappen plaats dan in een LCA. Er wordt alleen een aantal aspecten meegewogen dat in LCA buiten beschouwing wordt gelaten.

Het materiaal kalkmortel is nog lang niet uitputtend aan deze of vergelijkbare analyses onderworpen. Bij de voorbereiding van deze publicatie heeft het Nederlands Instituut voor Bouwbiologie en Ecologie (NIBE) een verkorte analyse (scanning LCA) op basis van het TWIN-model uitgevoerd. Daarbij zijn halfsteens buitenwanden van baksteen gemetseld met mortels op basis van schelpkalk, steenkalk en cement met elkaar vergeleken. Uit deze eerste analyse kan afgeleid worden dat buitenwanden gemetseld met kalkmortel gunstig scoren ten opzichte van buitenwanden gemetseld met portlandcement. Dit wordt vooral veroorzaakt doordat bij buitenwanden gemetseld met zachte mortels, zoals kalkmortel, hergebruik van de bakstenen na sloop mogelijk is. Bij hardere metselmortels op basis van cement, zullen bij de afbraak de stenen veelal breken, zodat hergebruik van de stenen niet mogelijk is.

Hierna komt eerst de analyse volgens het TWIN-model aan de orde (§ 3.2 en 3.3). Vervolgens worden in § 3.4 deze resultaten besproken en van kanttekeningen voorzien.
3.2 Steenkalk, schelpkalk en cement vergeleken

De in de restauratie toegepaste hoeveelheid kalk is slechts een fractie van de hoeveelheid kalk die wordt geproduceerd. De mondiale hoeveelheid kalksteen is gigantisch en schelpen worden voortdurend door de natuur geproduceerd. Door deze grote voorraden ziet het er niet naar uit dat deze grondstof ooit uitgeput zal raken. Voor het maken van een kilogram portlandcement is overigens ongeveer evenveel kalksteen nodig als voor een kilogram steenkalk. Bij portlandcement bestaat de grondstof weliswaar voor een aanzienlijk deel uit klei, maar omdat in het totaal ook de hoeveelheid kalksteen die wordt gebruikt voor de rookgasontzwaveling opgeteld moet worden, komen we uiteindelijk toch op een vrijwel gelijke hoeveelheid uit.

Voor de vervaardiging van portlandcement zijn nog een aantal andere grondstoffen nodig, zoals klei en gipsgesteente. Ook voor deze stoffen geldt, dat niet voor uitputting gevreesd hoeft te worden. Met de productie ervan hangt uiteraard wel een aantal andere milieufactoren samen.

Winning van de grondstof

Behalve naar de uitputting van natuurlijke grondstoffen moet bij winning ook worden gekeken naar de hoeveelheid brandstof die daarvoor nodig is en naar het effect dat winning heeft op het landschap en de omgeving. Voor wat betreft de hoeveelheid energie die bij de winning wordt verbruikt zijn de verschillen tussen een kilogram portlandcement, schelpkalk of steenkalk niet significant.

Zowel bij de winning van schelpkalk als van steenkalk ontstaat continu aanzienlijke geluidshinder. Bij het winnen van schelpen draaien machines continu door. Voor de winning van steenkalk worden explosieven, bulldozers en vrachtwagens gebruikt. Bij de schelpenwinning is vooral ook de geluidshinder als gevolg van de overslag in de haven een belangrijke factor. Daarnaast wordt bij het winnen van schelpen stank veroorzaakt door dode organismen die tijdens de winning mee naar boven komen. Bij de winning van schelpen vormt het meegekomen materiaal (behalve de rottende planten- en dierenresten ook nogal wat zand en grind) een flinke hoeveelheid afval, die weer verwerkt moet worden.

De landschapsaantasting bij de productie van steenkalk wordt veroorzaakt door het winnen van kalksteen en het oppompen van grondwater. Bij de productie van schelpkalk is dit het gevolg van het winnen van de schelpen en het oppompen van water. Schelpenwinning is een grootschalig proces. Bij het verwijderen van de schelpen treedt aantasting op in de vorm van vertroebeling van het water. Tevens wordt tijdens de winning een gedeelte van de bodem weggezogen, waardoor in en op de bodem levende organismen vernietigd worden. Door de schelpen uit geulen
te halen, probeert men deze aantasting zo klein mogelijk te houden. De schelpen-
winning wordt beoordeeld als een ernstige aantasting van het (onderwater)land-
schap.

De productie

Zowel kalk als cement moeten worden gebrand, maar het branden van kalk gebeurt
bij lagere temperaturen. Bij de productie leidt dat tot significante verschillen in de
benodigde hoeveelheid brandstof.

Een probleem bij het branden van kalk is dat er een vrij grote hoeveelheid
kooldioxide (veel meer dan bij cement) wordt geproduceerd. Die uit kalk vrijgeko-
men hoeveelheid kooldioxide wordt weliswaar later bij de carbonatatie weer alle-
maal door de kalk opgenomen, in de praktijk is dat echter een proces dat eeuwen in
beslag kan nemen. Bij de berekening is het kooldioxide die later weer wordt gebon-
den, niet als emissie meegenomen.

3.3 Metselwerk met mortels van steenkalk, schelpkalk en cement

Op basis van alle factoren die hiervoor zijn genoemd, is bepaald wat per kilogram
bindmiddel de milieubelasting is. Rekening houdend met de volumieke massa en de
gebruikelijke mengverhouding van de verschillende morteltypen en de hoeveelheid
mortel die nodig is bij het metselen (inclusief het morsverlies) kan men de milieu-
belasting per vierkante meter metselwerk bepalen. In het rekenmodel is daarvoor uitgegaan van één vierkante meter halfsteens buitenspouwblad in waalformaat baksteen. Dit is een constructie die weliswaar in de restauratie in minderheid voorkomt, maar als het er om gaat om de verhoudingen tussen de milieueffecten van bindmiddelen te vergelijken, is die keuze wel geschikt.

Voor het maken van de mortel zijn behalve kalk of cement ook water en toeslagstof (zand) benodigd. Er is bij de drie bindmiddelsoorten uitgegaan van een mengverhouding van één deel bindmiddel op drie delen zand. Het milieueffect van het zand is daardoor in de vergelijking niet significant. Ook is de hoeveelheid mortel die voor voegen of metselen wordt gebruikt gelijk, ongeacht of de mortelspecie wordt gemaakt met cement of met kalk. Er kan vanuit gezondheidsoogpunt geen onderscheid worden gemaakt tussen de verschillende bindmiddelen.

Wordt in de gehele redenering tot aan hier een tussenbalans opgemaakt, dan blijkt dat het subtotaal van het milieueffect van het gebruik van de drie verschillende bindmiddelen ongeveer gelijk is.

Hergebruik

Een groot voordeel van kalkmortels ten opzichte van cementmortels betreft iets waar we in de restauratie eigenlijk liever niet mee zouden willen rekenen: het verschil wanneer het gebouw wordt afgebroken. Bij een in cementmortel opgetrokken muur is het nauwelijks mogelijk de mortel en de stenen van elkaar te scheiden. Past men speciale, bindmiddelarme cementmortels toe, dan zou dat overigens wel mogelijk moeten zijn. Bij een kalkmortel is het scheiden van mortel en steen veel minder een probleem. In tegenstelling tot steen gemetseld in (traditionele) cementmortels is het vaak goed mogelijk steen gemetseld in kalkmortels te hergebruiken. In traditionele cementmortels gemetselde muren leveren daarentegen na sloop niet meer op dan puin. Dit is een belangrijk verschil. Ook voor de produktie van baksteen is immers veel energie nodig! Bouw- en sloopafval van baksteen wordt meestal gebroken tot metselwerkpuin en veelal vermengd met betongranulaat tot menggranulaat. Menggranulaat wordt voornamelijk toegepast in funderingen van wegen en dijken.

Op grond van de verkorte analyse volgens het TWIN-model mag de conclusie worden getrokken dat de mogelijkheid van hergebruik van baksteen na sloop van
het gebouw het belangrijkste verschil is, in de vergelijking van buitenmuren gemet- seld met mortels op basis van cement, steenkalk of schelpkalk.25

3.4 De analyse nader beschouwd

De voorgaande analyse heeft enige tijd geleden plaatsgevonden op grond van literatuurgegevens met betrekking tot de onderzochte materialen. Inmiddels zijn de inzichten al weer iets gewijzigd en is de analysemethode bijgesteld. Ook blijkt dat er vanuit de praktijk enkele kleine kanttekeningen bij de analyse zijn te plaatsen. Hoewel geen dramatische wijzigingen verwacht mogen worden, zal in de toekomst het verschil in milieueffect van de besproken bindmiddelen nog nauwkeuriger en gedetailleerder geanalyseerd kunnen worden.

Zo geldt bijvoorbeeld dat vanuit de milieu- en arbeidswetgeving eisen zijn gesteld en inmiddels ook maatregelen zijn genomen om de geluidsproductie te verminderen. Omdat dit zowel voor de winning van schelpen als voor het delven van de grondstoffen voor steenkalk en cement geldt, zal deze constatering echter niet leiden tot een aanmerkelijk verschil tussen de duurzaamheidsaspecten van de verschillende materialen. Bij de schelpkalkproductie moet men daarbij wel in het oog houden dat het aantal installaties veel minder omvangrijk is dan bij de steenkalk- en cementproductie. Gunstig voor de schelpkalkproductie is bovendien dat tegenwoordig ten behoeve van deze industrie uitsluitend fossiele schelpen worden gebruikt. De hoeveelheden afval en de stank worden significant gereduceerd doordat er slechts weinig organisch materiaal wordt opgezogen en veel zand, grind, plantenresten en dode dieren al op zee uit de schelpenmassa worden verwijderd en met zeewater worden geloosd. De schelpen die worden gewonnen zijn 300 tot 1500 jaar oud en komen uit geulen waarin zij zich door getijdestromen hebben verzameld. Vrij snel na het wegzuigen van de schelpen herstelt het onderwaterlandschap zich, omdat onder invloed van getijdestromen de winputten weer gevuld worden. Bij de winning van kalksteen voor de productie van steenkalk en cement is de verstoring van het landschap daarentegen permanent, ook al wordt het landschap tegenwoordig meestal nadien \textit{hersteld}. Het aantal locaties waar kalksteen gewonnen kan worden staat ten gevolge van de verstedelijking en de toegenomen aandacht voor natuur- en landschapsbehoud echter onder druk.

Het verschil in ontginning van de grondstoffen voor de productie van schelpkalk versus steenkalk leidt tot verschillende gevolgen voor het milieu. De gevolgen van de ontginning van oude fossiele schelpen is – omdat dit onder water

25 Van der Loos 2000.
Kalk, ethiek en ecologie

geschiedt – uiteraard minder zichtbaar dan bij de ontginning van kalksteen of klei (voor cement) die in open groeven gebeurt. Met betrekking tot het morsverlies dient opgemerkt te worden dat (ingedroogde) gemorste specie, mits deze op basis van luchtkalk of zwak hydraulische kalk is gemaakt, na het toevoegen van water weer bruikbaar is. De carbonatatie van luchtkalk neemt immers geruime tijd in beslag. Voor mortels op basis van hydraulische kalk of cement is gebruik van gemorste specie uitgesloten.26

Los van deze vergelijking op het niveau van het materiaal wordt veel meer milieu-winst in het vooruitzicht gesteld, wanneer tenminste de delen van gebouwen waarin veel materiaal en energie is opgeslagen zo veel mogelijk behouden en hergebruikt worden. In die zin is monumentenzorg en hergebruik van gebouwen verre te verkiezen boven de hedendaagse praktijk waarin de levensduur van mortels (vaak gesteld op vijfenzeventig jaar, maar in de praktijk vaak eeuwen langer) maar al te vaak door een gebouw niet wordt gehaald.

Het milieueffect van hergebruik bij restauraties

Hiervoor is al aangegeven dat een belangrijk voordeel van mortels op basis van kalk – vooral van mortels op basis van luchtkalk – is dat bij sloop van het gebouw de steen schoongebikt en hergebruikt kan worden. Dit lijkt een aspect waarmee monumentenzorgers liever geen rekening mee willen houden, omdat de sloop van een monument voor hen geen aantrekkelijke optie is. Toch speelt dit aspect in hun dagelijkse praktijk een belangrijke rol. Niet alleen wordt er bij restauratiewerken veelvuldig gebruik gemaakt van tweedehands stenen, ook de mogelijkheid om stenen uit het onderhanden werk opnieuw te gebruiken is van aanmerkelijk belang. Bij restauratiewerk waarbij een deel van het metselwerk wordt gesloopt (zoals bij inboetwerk ter plaatse van scheuren en bij het opnieuw omzetten van delen van muren, waarvan de mortel is vergaan) wordt bij voorkeur gebruik gemaakt van de afkomende steen. Niet alleen hebben zachte mortels op basis van luchtkalk het voordeel dat de afkomende steen hergebruikt kan worden, ze zijn bovendien relatief gemakkelijk te verwijderen, hetgeen positief is met oog op de gezondheid van de betrokken bouwvakkers en de overlast voor de omgeving. Bovendien is de mate

26 Wat het gezondheidsaspect betreft zou een nadere analyse dienstig zijn. In steenkalk en (vooral) cement kunnen, afhankelijk van de toegepaste grondstoffen, onder andere zware metalen aanwezig zijn. (V.m. M.L. Ouwehand.) Dit aspect is niet in de hier gepresenteerde analyse in ogenschouw genomen.
waarin aangrenzend materiaal de kans loopt beschadigd te worden minder groot, naar mate de steen gemakkelijker is te verwijderen.

Het milieueffect van compatibiliteit

We beperken ons in het volgende tot voegmortels (metselmortels worden bij een normaal onderhouden monument zelden vervangen, maar de redenering kan op gelijke wijze ook voor metselmortels worden gevolgd). Als een bepaalde mortelsoort frequenter vervangen moet worden dan een andere, dan scoort deze uit milieu-oogpunt ook slechter. Niet alleen is sprake van de vervanging van een materiaal (wat afval oplevert en grondstoffen en energie kost), ook is sprake van werkzaamheden die voor veel overlast zorgen en vaak als tamelijk belastend voor de bouwvakker kunnen worden gekenschetst. Hoe duurzamer een mortel is, des te beter is dat voor het milieu.

Afgaande op de praktijkervaring zou een cementmortel dan slecht scoren. Traditioneel kalkgebonden voegwerk hoeft immers zelden vervangen te worden. Gebeurt dat wel, dan blijkt vaak dat de nieuwe – veelal cementgebonden – mortel na enkele decennia opnieuw aan vervanging toe is. Dit verschijnsel heeft evenwel *niets* met de kwaliteit van de materialen kalk en cement te maken. Het verschil zit vooral in de degelijkheid van de bewaard gebleven kalkvoegen en de helaas vaak slechte kwaliteit van de *uitvoering* van de nieuwe cementvoeg. Niet alleen het materiaal maar vooral ook de uitvoering is hierbij bepalend. We moeten ons hierbij rekenschap geven van de feitelijk oneerlijke vergelijking van nieuw te maken voegwerk met oude kalkgebonden voegen met een bewezen degelijkheid die, zo blijkt uit de praktijk, op vele eeuwen gesteld worden. Een vakkundig aangebrachte voeg op basis van cement zou, mits het materiaal in die situatie compatibel is, gemakkelijk een zelfde levensduur moeten kunnen halen als een nieuw aan te brengen voeg op basis van kalk. De verschillen tussen goede en slechte keuzen (uit oogpunt van milieu) zitten slechts voor een deel in de toepassing van een bepaald type bindmiddel en vooral in de mate waarin we in staat zijn daarmee een duurzame voeg te maken. Een duurzame voeg is een compatibele voeg: één die passend is in de situatie waarin hij wordt aangebracht. Op die compatibiliteit wordt in het vervolg van dit boek nog uitgebreid teruggekomen.

4 Besluit

Lang was er alleen kalkmortel beschikbaar voor het vervaardigen van metselwerk. De mortel was soms (in zekere mate) hydraulisch, wanneer deze mortel moest uitwaren in een vochtige omgeving, doch meestal was het belangrijkste bindmiddel de (traag) luchthardende kalk.
Kalk, ethiek en ecologie

Er is vandaag nog kalk op de bouwmarkt maar het is geen vertrouwd en veel toegepast materiaal meer. Voor restauratie blijkt kalk een zeer waardevol bindmiddel te zijn dat binnen het conceptuele kader van de restauratiepraktijk past. Kalk is in vergelijking met de meer gangbare bindmiddelen voor mortel in de renovatie- en restauratiesector een goed alternatief en indien we er meer compatibele mortels mee kunnen maken ook te verkiezen. Zo blijkt ook dat duurzaam bouwen en duurzame ontwikkeling, waarin ook de monumentenzorg zijn plaats heeft, zijn voordeel te kunnen doen met het gebruik van kalk. Zoals wel vaker is ook in dit opzicht het verleden een goede leermeester. Daarom lijkt het nuttig in het volgende hoofdstuk eerst even stil te staan bij de geschiedenis van het gebruik van kalk.
Historische bindmiddelen

1 Inleiding

In de loop der tijd heeft men voor het bouwen van tal van verschillende bindmiddelen gebruik gemaakt. Hoewel er per streek of gebied grote verschillen te onderkennen zijn, is er wel een grote lijn in het gebruik van de verschillende bindmiddelen te onderkennen. Die is onder andere door V. Furlan en P. Bissegger in schema gebracht.\(^\text{27}\)

![Diagram van historische bindmiddelen in de bouw](image)

Figuur 5
Overzicht gebruik van bindmiddelen in de bouw

Dit schema verduidelijkt op een overzichtelijke wijze het gebruik van bindmiddelen in de bouw tot vandaag. In het schema wordt onderscheid gemaakt in vier grote groepen van bindmiddelen: natuurlijke bindmiddelen (klei, bitumen), luchthardende bindmiddelen (gips en luchtkalk); hydraulische bindmiddelen (kalk en puzzolane); en organische bindmiddelen (asfalt).

\(^{27}\) *Furlan 1975.*
met puzzolanen, Romeins cement, hydraulische kalk, portlandcement en verschillende afgeleiden van deze laatste) en organische bindmiddelen (kunststofharsen en aardolieaderivaten, door Furlan ook wel *zwarte producten* genoemd).

We zullen het in het vervolg hebben over de bindmiddelen die luchthardend of hydraulisch zijn. Voor de definities verwijzen we naar het vervolg van dit boek. Het bindmiddel gips komt daarbij niet meer aan de orde, omdat het geen rol speelt voor het onderwerp van deze publicatie: kalkgebonden voeg- en metselmortels.

Op de tijdsschaal is duidelijk dat kalk gedurende een lange periode het belangrijkste bindmiddel is geweest. Het was echter niet het eerste bindmiddel voor de bouw.

Klei is wellicht het eerst gebruikte bindmiddel voor mortel en pleisters. Archeologische vondsten, in Turkije (Catal Hüyük) uit de periode van 6 000 voor Christus, en uit het La Tène Tijdperk (eveneens Turkije, omstreeks 450 voor Christus) tonen reeds het gebruik aan van leem en gestampte aarde als *mortel*. Er zijn geen voorbeelden bekend van het gebruik van kalk tijdens de prehistorie in Centraal- en Noord Europa.

De Egyptenaren kenden nog geen kalk maar vervaardigden een artificieel bindmiddel door het branden van gipssteen tot gips dat als bindmiddel kon worden gebruikt voor mortel. Zo werd voor het voegen van de piramide van Cheops, rond 2600 voor Christus, een halfhydraat \(\text{CaSO}_4 \cdot \frac{1}{2}\text{H}_2\text{O} \) gebruikt, dat men verkreeg door het branden van gipssteen tot 120 °C.

2 Het gebruik van kalk door de eeuwen heen

In deze paragraaf wordt een overzicht geschetst van de evolutie van het gebruik van bindmiddelen voor mortel en meer bepaald van toepassing van kalk. Hierbij wordt een aantal historische bronnen aangehaald om het gebruik van kalk in zijn tijd en in de toenmalige bouwpraktijk te plaatsen. Voor een meer gedetailleerde studie van historische bronnen en receptuur verwijzen we naar de genoemde bronnen.

2.1 Het begin van het kalktijdperk: Griekse mortel

Volgens P. Martin werden in Griekenland vanaf de zesde eeuw voor het begin van de jaartelling pleisters en afwerklagen met kalk als bindmiddel op de ruwe opper-

29 Furlan 1975.
30 Furlan 1975, p. 2.
vlakken van tuf- en kalksteen aangebracht.31 De Grieken verkozen kalk boven gips als bindmiddel voor pleistermortel. Pas vanaf het einde van de tweede of het begin van de eerste eeuw voor Christus gebruikten ze kalkmortel ook als metselmortel. De oudste voorbeelden van dit gebruik van kalkmortel werden gevonden in woningen in Delos en Thera.32 Voorheen werden de stenen aan elkaar verlijmd met klei of leem33 of met een gipsmortel34 die door een Griekse theoreticus, Philo van Byzantium, werd voorgeschreven voor de bouw van versterkingen.35 Ook al kenden de Grieken kalk als bindmiddel voor metselwerk, toch werd kalk in hoofdzaak gebruikt voor stucwerk, geschilderd pleisterwerk en pleisterwerk in (water)reservoirs.

De kalkmortel die de Grieken vervaardigden bestond uit kalk en fijn zand dat soms van vulkanische oorsprong was.36 De pleisters bevatten soms ook nog gips en marmerpoeder.

In Thera werd een mengsel van kalk en zand gevonden waarvan het zand uit een vulkanisch poeder bestond: de zogenaamde aarde van Santorini. Hiermee verkreeg men een mortel die resistent was tegen water en zo in zekere zin te vergelijken is met de moderne mortel op basis van hydraulische bindmiddelen. Deze aarde van Santorini werd ook uitgevoerd want sporen ervan werden teruggevonden in stucwerk in Athene. Wanneer men niet over deze aarde kon beschikken werd de hydrauliciteit van de mortel verhoogd door aan het mengsel van zand en kalk gemalen dakpanscherven of andere vormen van gemalen keramiek toe te voegen. Die techniek zou ingevoerd zijn door de Feniciërs. Deze laatste wisten dat het vermengen van gemalen keramiek met kalk de mortel resistent maakt tegen water. Het verkregen product is de voorloper van de moderne artificiële puzzolanen.37

2.2 Ontwikkeling met eeuwenlange resultaten: Romeinse mortel

De Romeinen hebben de kalkmorteltechnologie tot hoge ontwikkeling gebracht. Gips en leem werden voor de vervaardiging van metselwerk vervangen door kalkmortel. Hieraan werd een hele reeks toeslagstoffen toegevoegd om de mortel de vereiste eigenschappen te geven. De Romeinen slaagden erin metselwerkstructuren en zelfs een soort beton te vervaardigen met kalk als bindmiddel. Hiermee bouw-

32 Furlan 1975, p. 3.
33 Furlan 1975, ref. 5.
34 Adam 1984.
35 Adam 1984, ref. 98.
36 Martin 1965.
37 Furlan 1975.
den ze koepels en bogen die lange tijd niet geëvenaard werden, zoals bijvoorbeeld de koepel van het Pantheon in Rome. Bij de bouw van deze koepel werden aggregaten van verschillende soortelijke massa gebruikt om met de wijziging van het eigen gewicht van het beton de stabiliteit van de koepel te kunnen verzekeren. De uitgebreidheid van het Romeinse imperium heeft er ook voor gezorgd dat deze techniek wijd verspreid werd in Europa, Klein-Azië en het noorden van Afrika.

Eén van de eerste vermeldingen van het *opus caementicum* is terug te vinden in de geschriften van Cato de oudere (234 - 149 voor Christus) die een constructie beschrijft *ex calce et caementis*. Vitruvius, een architect van de eerste eeuw, geeft de meest volledige beschrijving van de samenstellende delen van een kalkmortel en hun gebruik. In zijn *Tien boeken over architectuur*, die wellicht een goede weergave zijn van de gangbare bouwpraktijk, staan veel gegevens die de technologie van de kalkmortel in die tijd weergeven. *Na het blussen* [van de kalk] moet men de mortel mengen, ingeval van groevezand: drie delen zand op een deel kalk; bij rivier- of zeezand: twee delen zand op een deel kalk. Zo wordt de juiste mengverhouding verkregen. Bij toepassing van rivier- of zeezand geeft ook toevoeging van een derde deel fijngestampte en gezeefde baksteen een speciemengsel dat beter is in het gebruik.

Het zeezand wordt door Vitruvius als minderwaardig beschouwd omdat het gebruik ervan gevaar inhield van uitbloeien van het zout. Hij raadt het gebruik van zand uit de omgeving van de Vesuvius aan voor morteltoepassingen die met water in contact komen. Deze materialen noemt men nog steeds puzzolanen, een naam die afgeleid is van de ontginningsplaats te Pozzuoli, aan de voet van de Vesuvius. Vitruvius geeft ook andere vindplaatsen aan, onder andere rond de Etna en in de heuvels van Mysia in west Turkije, ten noordoosten van Bergama.

De band van de hydraulische eigenschap met de vulkanische oorsprong van het materiaal was hem goed bekend, maar de beschrijving van de processen die volgens hem aan de basis zouden liggen van de hydraulische eigenschappen van dit materiaal is mede ingegeven door de natuurfilosofie van de Romeinen. Daarin trachten ze de fenomenen die ze om zich heen zagen te verklaren. Ondanks dit naar onze maatstaven – gebrekkig inzicht slaagden de Romeinen er echter wel in deze kunstmatige hydraulische kalk te vervaardigen. Met deze natuurlijke puzzolanen en met de kunstmatige puzzolanen – zoals gemalen baksteengruis – maakten

38 Lamprecht 1983, p. 44.
39 Tyghem 1966.
40 Adam 1984, ref. 113.
41 Vitruvius s.a. II, 5, 1.
Tabel 2

<table>
<thead>
<tr>
<th>bindmiddel</th>
<th>aggregaten</th>
<th>water</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 volumedeel kalk(deeg)</td>
<td>3 volumedelen groevezand(^{42})</td>
<td>15 tot 20 % water</td>
</tr>
<tr>
<td>1 volumedeel kalk(deeg)</td>
<td>2 volumedelen rivierzand(^{43})</td>
<td>15 tot 20 % water</td>
</tr>
<tr>
<td>1 volumedeel kalk(deeg)</td>
<td>2 volumedelen rivierzand en 1 volumedeel vermalen keramiek(^{44})</td>
<td>15 tot 20 % water</td>
</tr>
<tr>
<td>1 volumedeel kalk(deeg)</td>
<td>2 volumedelen puzzolanen(^{45})</td>
<td>15 tot 20 % water</td>
</tr>
</tbody>
</table>

De Romeinen van de luchthardende kalk een hydraulisch bindmiddel dat gebruikt werd voor metsel- en pleisterwerk.

De mogelijkheid om aangepaste kalksteen te gebruiken voor het vervaardigen van natuurlijke hydraulische kalk was hen evenwel niet in die mate bekend, dat ze er doelgericht naar zochten. Zo werd in Groot-Brittannië Romeinse mortel gevonden met kunstmatig hydraulische kalk terwijl er in de buurt grondstof voor de productie van natuurlijke hydraulische kalk beschikbaar was.\(^{46}\)

Ook Plinius de jongere, Seneca en Sidonius Apollinaris, een christelijk dichter uit de vijfde eeuw, schrijven over het effect van de natuurlijke puzzolanen in kalkmortel.\(^{47}\)

De uitzonderlijke kwaliteit van de Romeinse mortel heeft heel wat legenden doen ontstaan over geheimen rond hun samenstelling en in het bijzonder over allerlei toeslagstoffen. Wellicht was het gebruik van toeslagstoffen zoals eiwitten, caseïne (een bindmiddel op basis van eiwitachtige bestanddelen van melk; het wordt wel eens verwerkt in de vorm van botermelk) en olie beperkt tot specifieke toepassingen. Zo weet men van het gebruik van mortel met olie voor het afdichten van voegen en van keramische afvoerpijpen\(^{48}\) en ook Vitruvius beschrijft het gebruik van olie voor de voegdichting bij het maken van waterdichte vloeren.\(^{49}\)

\(^{42}\) Vitruvius s.a. II, 5, 1.
\(^{43}\) Ibidem.
\(^{44}\) Ibidem.
\(^{45}\) Vitruvius s.a. V, 12, 1.
\(^{46}\) Davey 1961 I, p. 104.
\(^{47}\) Ferrari 1968.
\(^{48}\) Malinowski 1979, Malinowski 1981 I en Malinowski 1981 II.
\(^{49}\) Vitruvius s.a. VII, 1, 7.
Naast de samenstelling van de kalkmortel droegen de keuze van de grondstoffen en de verwerking bij aan de sterkte en de duurzaamheid van de Romeinse mortel. Bij de verwerking van de kalkmortel in de massieve partijen metselwerk en bij het maken van vloeren werd er zorg voor gedragen dat de mortel goed werd aangestampt waardoor deze een grote dichtheid kreeg. De uitvoering van pleisters in lagen met verschillende samenstellingen en het polijsten beïnvloedden het watertransport in de pleister en tevens het carbonatatieproces dat ten grondslag ligt aan de binding van de luchthardende kalkmortel.

Alles lijkt er dus op te wijzen dat de uitzonderlijke resultaten die met de Romeinse mortel konden worden verkregen te danken waren aan een goede controle op het brandproces en bij het blussen van de kalk, aan de homogeniteit van de mortel en aan de verzorgde uitvoeringstechniek.

Met een studie van kalkovens in het Middellandse-Zeegebied heeft J.P. Adam zich een beeld gevormd van het branden en blussen van kalk in de antieke tijd. Hij onderscheidt drie vormen van kalkbranden:

1. in een oven waar het vuur onderaan wordt onderhouden. Het branden gebeurt continu;
2. in een oven waarin laagsgewijs kalksteen en brandstof wordt gestapeld van bovenuit. Het branden gebeurt continu door bovenaan in de oven laagsgewijs bij te laden;
3. het branden in de openlucht. Dit procédé is beperkt tot gipssteen vanwege de beperkte temperatuur die ermee kan worden bereikt.

Omdat het branden van de kalk moet gebeuren bij een temperatuur van ongeveer 900 °C werden de ovens zo geplaatst dat een optimale isolatie van de buitenwanden van de ovens was verzekerd. Dit was ook nodig om een vrij homogene temperatuur in de oven te verzekeren. Immers, bij een te hoge temperatuur krijgt men doodgebrande kalk die niet goed blust en niet goed bindt. Bij te lage temperatuur wordt de kalksteen onvolledig gecalcineerd en wordt dus in de mortel een gedeeltelijke kalksteen (die niet aan de verhardingsreactie zal bijdragen) in plaats van (reactieve) kalk verwerkt. Cato de Oudere schrijft voor om de ovens in een berghelling in te graven.

50 Frizot 1977.
51 Malinowski 1979, Malinowski 1981 I en Malinowski 1981 II.
52 Adam 1984.
vaak in de groeve waar de kalksteen werd ontgonnen, en ze zo te oriënteren dat de overheersende wind de oven niet afkoelt.53

In streken waar het veel regent werd er boven de vuurhaard, ter hoogte van het niveau van het terrein, in uitlaatopeningen voorzien, zodat de bovenkant van de oven kon worden afgedekt en de rook toch weg kon. Op die manier werd een plotselinge afkoeling van de inhoud van de oven door de regen vermeden. Of dergelijke ovens ook bij ons hebben bestaan is niet bekend. Wel stelt men vast dat de later ontwikkelde en nog gekende kalkovens in de streek van Doornik allen aan de bovenzijde een opening hadden waardoor ook de kalksteen werd ingeladen. Uit de Romeinse periode zijn slechts de overblijfselen van één kalkoven in Doornik bekend.54

Het blussen van de kalk gebeurde vaak op de werf omdat het vervoer van de gebrande kalk(steen), die door het branden zowat één derde van zijn gewicht had verloren, gemakkelijker was dan het vervoer van het zwaardere kalkdeeg. Uit archeologische opgravingen in Pompeï blijkt evenwel dat kalk ook in de vorm van kalkdeeg verhandeld werd in amfora’s, vermoedelijk naar plaatsen waar er geen ruimte was voor het maken van een kalkput voor het blussen55 of waar slechts kleine hoeveelheden nodig waren.

Omdat noch bij het branden noch bij het blussen alle processen even homogeen in het materiaal doorgaan en bij de verwerking van de kalk absoluut moest worden vermeden dat er nog calciumoxide in de mortel zat, raadde men aan het kalkdeeg een hele tijd te laten liggen alvorens het te gebruiken. Plinius schrijft in dit verband een bewaartijd van drie jaar voor.56 Om dezelfde reden was het goed door-mengen van kalk en zand zeer belangrijk. Dit gebeurde met een kalkhouw waarmee de kalkknollen en eventuele brokken calciumoxide konden worden verkleind.

Het uitharden van kalk wordt door Vitruvius beschreven in zijn tweede boek, hoofdstuk V, §2 en §3. Hij geeft aan hoe het komt dat men met kalk een mortel kan maken die hard wordt. Vitruvius beroept zich hierbij op de antieke natuurfilosofie die ervan uitgaat dat alle materie bestaat uit een combinatie van de vier oer-

53 Tyghem 1966 en Adam 1984.
54 Chantry 1979.
55 Adam 1984, p. 78, fig. 160.
56 Adam 1984, ref. 108.
elementen: water, vuur, aarde en lucht. Waarom nu eigenlijk kalk vermengd met water en zand het muurwerk laat hechten, schijnt te worden verklaard doordat ook gesteenten, net als alle andere lichamen, uit de vier elementen zijn samengesteld. Bevatten ze meer lucht, dan zijn ze zacht, met een hoger gebalde aan water zijn ze soepel door het vocht, zit er meer aarde in dan zijn ze hard, en met meer vuur bereikbaar. Als dus kalksteen in kleine stukjes wordt gebakt zonder te worden gebrand, en met zand vermengd in het muurwerk wordt verwerkt, geeft hij geen stevigheid en hecht niet. Maar wanneer de kalksteen in de oven is geworpen en door de inwerking van de enorme hitte van het vuur zijn oorspronkelijke eigenschappen van vastheid heeft verloren, dan is zijn eigen kracht opgebrand en uitgeput en blijft hij achter met open en lege poriën.

Wanneer het vocht dat zich in het lichaam van die steen bevindt, alsook de lucht, er dus is uit gebrand en vrijgekomen, en de steen nog de resterende warmte in zich besloten houdt, en op dat moment in het water wordt gedompeld, voordat hij uit het vuur opnieuw kracht opdoet, dringt vocht binnen in de open poriën. De kalksteen begint te stomen en nadat hij is afgekoeld drijft hij tenslotte de bitte uit de substantie die nu kalk is geworden. Vandaar dat de stukken kalksteen die uit de oven worden gebaald niet meer hetzelfde gewicht hebben als toen ze erin werden geworpen. Bij weging blijkt dat, hoewel hun grootte hetzelfde blijft, door het uitkoken van het vocht hun gewicht met ongeveer een derde is afgenomen. Daarom laten de poriën en holten in de kalk, die nu open zijn, gemakkelijk vermenging met zand toe. Deze twee materialen vormen zo een verbinding en tijdens het drogen hechten ze zich aan de breuksteen en zorgen voor een stevig muurwerk.

Volgens Vitruvius is dus de uitharding en de binding van de kalkmortel het gevolg van de porositeit van de materialen waardoor ze goed aan elkaar hechten, alsof ze in elkaar worden verankerd via deze open poriën. Het branden van de kalksteen is in deze opvatting nodig om de openheid van de structuur van het materiaal te vergroten.

Vitruvius schreef dat met een mengsel van kalk en van aarde uit vulkanische gebieden een mortel kan worden gemaakt die bestand is tegen water en zelfs in water kan hard worden. Hij gaf hiervoor de volgende verklaring. Dit schijnt te komen doordat in deze streken onder het gebergte de aardbodem beet is, met talrijke hete bronnen. Die zouden er niet zijn als beneden in de diepte niet geweldige vuren van zwavel, aluin of aardpek brandden. Het vuur met de gloed van vlammen baant zich vanuit de diepte door spleten een weg omhoog en maakt met zijn bitte de grond daar licht; de aan de oppervlakte komende tufsteen bevat geen vocht. Wanneer dus drie substanties, die alle op dezelfde manier door de kracht van het vuur zijn gevormd, tot een massa worden vermengd, en daarna open de vochtigheid opnemen, dan hechten ze

Vitruvius s.a. II, 6, 1.
Historische bindmiddelen

zich vast aan elkaar. Het vocht verhardt ze zo snel tot zo’n sterk geheel, dat geen golf en geen waterkracht ze uiteen kan trekken.

In de oude geschreven wordt steeds de nadruk gelegd op het gebruik van zuivere kalkstenen voor het branden van de kalk. Deze zuiverheid werd gemeten aan het gewichtsverlies bij het branden. Dit heeft zeker tot gevolg gehad dat de natuurlijke hydraulische kalk zo laat werd ontdekt en dat men, in plaats van natuurlijke hydraulische kalk te ontginnen, eerder kunstmatige hydraulische bindmiddelen met puzzolen vervaardigde.

2.3 Kalk in het middeleeuwse bouwbedrijf

Uit talrijke analyses van mortels uit middeleeuwse bouwwerken uit West-, Centraal- en Zuid-Europa, blijkt dat er in de Middeleeuwen geen noemenswaardige veranderingen in de technologie van de kalkmortel plaats hebben gevonden. Dat zou zelfs zo blijven tot in de negentiende eeuw. Er werd verder gewerkt met de producten die bekend waren uit de Romeinse periode. In onze contreien is het aantal bouwwerken dat in metselwerk wordt opgetrokken aanvankelijk minimaal. Alleen belangrijke gebouwen zoals kloosters, kerken, adellijke huizen, kastelen en vestingwerken worden in steen opgetrokken. Met de opkomst van de steden in de loop van de Middeleeuwen komt daar evenwel verandering in. Voorschriften betreffende de brandveiligheid zowel als het prestige dat wordt ontleend aan het bezit van een steen (stenen huis) leidden tot de verstening van de architectuur.

De minder goede organisatiestructuur van de handel dwong de bouwers ertoe om de grondstoffen dicht bij de bouwplaats te zoeken. Dit verklaart wellicht de verscheidenheid aan mortelsamenstellingen die zelfs in een klein gebied kunnen worden aangetroffen. Zo blijkt bijvoorbeeld uit de chemische analyse van een aantal mortels uit de kerk van Theux, bij Luik, dat er een grote variatie bestaat in de samenstelling van mortel. De hydrauliciteitsindex van deze mortel, die weergeeft in welke mate de mortel hydraulische bestanddelen bevat, blijkt één van de meest bepalende factoren te zijn om onderscheid te maken tussen verschillende mortels in historische gebouwen. Deze hydrauliciteit is het gevolg van het (bewust en onbe- wust) gebruik van kalksteen die met kleibestanddelen vervuild is of van het gebruik van kunstmatige of natuurlijke puzzolen als toeslagstof bij de kalkmortel. Het

58 Alou 1989, p. 5.
59 Davey 1961 I en Davey 1961 II.
60 Dupas 1986.
aandeel van de verschillende samenstellende delen van de mortel loopt vaak sterk uiteen. Zo leidt men uit analyses af dat in sommige gevallen de mortel meer kalk dan zand bevat; in andere gevallen is dat omgekeerd. Blijkbaar nam men het niet zo nauw met de samenstelling van de mortel. Dat zou verklaard kunnen worden door de onzuiverheden van de kalk of van het zand.

De oudste mortel waar een bouwhistoricus in Utrecht, afgezien van Romeins werk onder het Domplein, mee te maken krijgt, betreft metselwerk van tufsteen uit de elfde of twaalfde eeuw. Dit zijn mortels van een goede kwaliteit, zowel qua hardheid als qua hechting, en met een zeer grove samenstelling. Mortels van de dertiende eeuw en van latere periodes worden in Nederland gekenmerkt door hun grove (zand)fractie. In deze periode is in Utrecht sprake van een bereiding op basis van schelpkalk. Door onvolledige verbranding of bijmengen van gemalen (en soms ook hele) schelpen en het gebruik van vrij grof zand krijgt de mortel een karakteristieke grauwe kleur.

De grondstoffen voor de fabricage van natuurlijke hydraulische kalk zijn in de streek van Doornik in overvloed aanwezig. Kalk uit het Doornik werd stroomafwaarts langs de Schelde veel gebruikt. De aanwezigheid van deze minder zuivere kalksteen aan de Schelde zou er toe bijgedragen kunnen hebben dat deze hydraulische kalk werd toegepast, zonder dat de gebruikers deze hydraulische eigenschappen voor ogen hadden. Het was wellicht slechts de gemakkelijkst verkrijgbare kalk. Deze kalk werd droog geblust. Men deed dit door de kalk te mengen met nat zand. Binnen een redelijk korte termijn (van enkele dagen of enkele weken) werd de kalk vervolgens verwerkt. Daarom is het goed mogelijk dat de natuurlijke hydraulische kalk gedurende de eerste dagen na het blussen aanvoelde als een kalkhydraat.

Een aantal aspecten van de verwerking van kalkmortel kan geïllustreerd worden aan de hand van de studies van F. van Tyghem c.s., waarin op basis van iconografisch materiaal een beschrijving gemaakt kon worden van het bouwbedrijf in de Middeleeuwen.

61 Klück 1999. De vraag of ook doelbewust gemalen schelpen aan een mortel werden toegevoegd lijkt vooralsnog een punt van discussie te blijven.
62 v.m. Matth van Rooden.
63 Hughes 2000.
64 Tyghem 1966 en Binding 1978.
2.4 De middeleeuwse kalkmortels en het bouwproces

Planning en voorbereiding

In het verleden was zelfs bij oorlogvoering kalk een belangrijke grondstof die men meenam om versterkte vestingen te maken. Zo is het verhaal bekend van een veldtocht van de Hollandse graaf Willem IV die in de veertiende eeuw als voorbereiding op een veldtocht tegen de Friezen kalk liet verschepen om dwangburchten te bouwen. Na de mislukte veldtocht keerden de kalkschepen volgeladen terug en werd de kalk verkocht.\(^{65}\)

Uit een kunsthistorische studie over de Sint Kwintenskerk te Leuven blijkt dat in bepaalde gevallen de kerkfabriek de kalk leverde aan de metselaar en in andere gevallen, in dezelfde periode, de metselaar van de gewelven zelf de kalk, afkomstig uit Namen of Fleurus, moest aankopen.\(^{66}\) In het bestek voor de bouw van gewelven in de Sint Kwintenskerk – te beëindigen vóór Sint-Kwintenskermis in 1535 – lezen we: „Item, de selve meester sal leveren, alle den calck, wesende naems of Flerus-calck, ende die vermetsen; niet te vet, noch te mager, dan alsoe hy behoort; mit ock den savel ende water ende anderssins, ende goede harde steen op de forme, gelyck men te Havere inde kerkke int welfsel gebesicht heeft...“ Dat men kalk van Fleurus voorschrijft heeft wellicht ook te maken met een zekere kwaliteitserkenning. Het transport vanuit Fleurus moet in die tijd tot een aanzienlijk hogere prijs voor deze kalk hebben geleid, dan de prijs die werd betaald voor kalksteen die dichterbij werd ontgonnen, zoals bijvoorbeeld in Namen.

In Nederland vond de schelpenwinning ten behoeve van de kalkproductie voornamelijk plaats langs de Noordzeekust, met de dorpen Scheveningen en Katwijk als zwaartepunten. Een groot deel van de gewonnen schelpen werd via de Oude Rijn of de Kromme Rijn vervoerd naar branderijen bij Zoeterwoude en Alphen aan den Rijn. De veengebieden in deze streken leverden de turf, die nodig was om de schelpen tot kalk te branden.

Aanvankelijk was de bereidingswijze van kalk zo gebrekkig dat omvangrijke hoeveelheden ongebrand bleven en bij een volgende lading opnieuw werden ingezet. De schelpkalk uit de Middeleeuwen bevat als gevolg van de gebrekkige bereidingswijze nog schelpengruis en zelfs hele schelpen, die niet gebrand waren.

\(^{66}\) Cuypers 1958.
Kalkboek

Verwerking
De kalk werd vermengd met zand en zo in metselwerk als mortel verwerkt. Hierbij moet de werkwijze besproken worden maar ook de mate waarin de uitharding de voortgang van het bouwproces beïnvloedde.

Typisch gereedschap voor de verwerking van kalkmortel, dat reeds gebruikt werd door de Romeinen en dat we ook op de middeleeuwse afbeeldingen terugvinden, was de kalkhouw. Deze kalkhouw werd gebruikt voor het mengen van kalk en zand en, zoals eerder reeds gemeld, voor het pletten van de eventuele kalkknollen. De kalkschop deed daarna dienst om de klaargemaakte mortel op te scheppen in een kalkmouw of kalkschuit, waarmee de mortel naar de metselkuip werd gedragen. Om de kalkmouw te vullen en op schouderhoogte te plaatsen werd een soort driepoot of vierpoot gebruikt.

Uit verschillende vermeldingen blijkt dat men de kalk ook zeefde of door een grote korf goot om de grotere brokken gebrande kalksteen, die moeilijk te blussen waren, te verwijderen. Hierbij moet in herinnering worden gebracht dat dit niet altijd mogelijk was. Immers, soms werd ook ongebluste kalk met nat zand gemengd en werd het mengsel kort daarop gebruikt. Hoogstens verbleef de zo gevormde mortel enige tijd na deze vorm van blussen op een mortelhoop. Van het zeven van de gebluste kalk kon in elk geval bij deze wijze van verwerken geen sprake zijn.

Nazorg
In de Middeleeuwen werden de metselaars onderverdeeld in verschillende categorieën. Er werden voornamelijk twee categorieën erkend: de meestermetselaar, die eveneens steenkapper was, en de metselaar die alleen met het plaatsen was belast. De metselaars leerden zelf hun leerlingen de samenstelling van de mortel en deze leerlingen werden mortelmaker, kalkblusser of pleisteraar. Het bereiden van de mortel was werk van de minst geschoolden. Ze werden dan ook als gewone arbeiders betaald. Het werk werd ook wel eens door vrouwen verricht.

In de winter konden de metselaars vrijwel niet werken omdat de kalkmortel,

67 Van de Walle 1959, p. 82.
68 Van de Walle 1959, p. 82 en Salzman 1967, p. 337.
69 Callebaut 2000 II.
70 Du Colombier 1953, p. 38.
71 Janse 1965, p. 31.
die zeer langzaam uithardde, bij onverwacht invallende vorst ernstige schade kon-oplopen. In de beschrijving van werkopdrachten werd soms vastgelegd in welke periode van het jaar mocht worden gemetseld. Van de bouw van Walberswick Church (Suffolk) in 1425 zijn dergelijke bepalingen overgeleverd: *Two mason’s undertake to build a tower, … They shall work yearly from Lady Day to Michaelmas, except the first year (when, presumably, they will be cutting the stone, which could be done at any season)*.73

Wanneer tegen de winter het metselwerk tegen de vorst beschermd moest worden, werd het afgedekt met zoden of stro en de gewelven met turfmolm.74 De gewelven werden meestal pas gemetseld wanneer het gebouw onder dak stond en toch vond men het blijkbaar nodig ze tegen bevriezen te beschermen.

Een duidelijk beeld van de voorzorgsmaatregelen die in de winter werden genomen geven de rekeningen van de Sint-Pieterskerk te Leiden van 1399. Daarin vindt men de betalingen voor onder andere dertig voet riet, zeven schepen veenzoden om het werk mee af te dekken en zestienhonderd vorstzoden voor boven op het werk. Met deze materialen werden de muren en pijlers, die nog niet onder de kap waren, tegen de verwoestende werking van het uitzettend ijs in nat en nog niet uitgehard metselwerk beschermd. Ook werd melding gemaakt van het feit dat Jan de opperman *toerfmol* (turfmolm) op het gewelf heeft gedragen. Gewelven werden meestal pas gemetseld als de muren al enige tijd gereed waren, maar hier is dat schijnbaar al gebeurd vóór het dak werd aangebracht. De zware materialen zoals zoden, die op de muren werden gelegd, kon een gewelf (dat meestal maar een halve steen dik was) niet dragen. Daarom nam men voor de afdekking van het gewelf turfmolm. Nog in 1625 - ’27 vermelden de rekeningen van de Onze-Lieve-Vrouw-over-de-Dijlekerk te Mechelen telkens posten van strodekkers om het werk in *arduyn* (hardsteen) en *careel* (baksteen) af te dekken.75

De metselaars zelf werden in de tijd dat ze niet konden metselen, zoals bijvoorbeeld op de werf van de Dom van Keulen in 1430, ingeschakeld voor het kappen van de steen.76

2.5 De Renaissance herontdekt de Romeinse mortel

In de Renaissance ontleenden architecten niet alleen hun vormentaal, maar ook technieken aan de Romeinse oudheid. De Romeinse morteltechnologie werd opge-

73 *Salzman 1967*, p. 499.
74 *Janse 1965*, p. 88.
75 *Janse 1965*.
76 *Du Colombier 1953*, p. 37.
nomen in de bekende voorbeeldboeken van Leone Battista Alberti (De re aedificatoria), Philibert de L’Orme (Ouvrages d’architecture, 1567), Andrea Palladio (Trattato d’Architettura, 1570) en Vincenzo Scamozzi (L’idea dell’Architettura Universale, 1615). De beschrijvingen van het gebruik van kalk en van het effect van de toeslag van puzzolanen van Vitruvius werden daarbij min of meer overgenomen.77

Over de invloed van de uitharding van de mortel op het bouwproces in de Romeinse periode is niet veel bekend. Vitruvius stelt in zijn tweede boek, hoofdstuk 4, dat zeezand de mortel maar traag doet drogen waardoor het bouwproces regelmatig moet worden onderbroken. Met deze mortel kan men, zo stelt hij, daarom geen metselwerk maken om gewelven te ondersteunen.78

Leone Battista Alberti, die de geschriften van Vitruvius doet herleven, is nauwkeuriger en schrijft dat de bouw af en toe moet worden onderbroken in afwachting van de uitharding van de mortel en dat het metselwerk goed moet kunnen drogen.79 Hier wordt reeds een belangrijk aspect van de carbonatatie aangegeven, namelijk de noodzakelijke droging van de mortel. Pas als de mortel voldoende is gedroogd kan de carbonatatie en daarmee dus de uitharding beginnen. De juiste theoretische achtergrond van dit proces kent men echter nog niet. In die tijd moet men nog steeds steunen op dezelfde opvattingen als Vitruvius om de kalkcyclus te verklaren.

Verder beschrijft Alberti hoe de formelen van de gewelven en bogen geleidelijk moeten zakken om de vervorming gelijkmatig te laten gebeuren. Door de plasticiteit van de mortel zet het gewelf namelijk nog iets. Deze plastische vervorming van het metselwerk, waarbij geen barsten of scheuren ontstaan, heeft een invloed op de spanningsverdeling in het metselwerk van gewelven en bogen.80

Een ontwerp van een rapport van Rafaël aan paus Leo X over de gebouwen van het antieke Rome en de wijze waarop hun grondplan moet worden opgenomen van 1519 leert dat in die tijd verzet begon te rijzen tegen het branden van het marmer van de antieke gebouwen om er kalk van te maken.81 Dit wijst erop dat het plunderen van de antieke gebouwen

77 Ferrari 1968.
78 Wij vermoeden nu, dat dit het gevolg is van de zeezouten die met het zeezand in de mortel terecht zijn gekomen en als effect hebben dat vocht langer wordt vastgehouden.
79 Alberti s.a.
80 Krauss s.a. en Fitchen 1981.
81 Choay s.a.
sites voor de *recuperatie* van het marmer zeer gangbaar was, zoals dat wellicht voordien ook reeds gebeurde, omdat de kosten van transport immers ook toen al hoog waren.

In de lage landen wijzigde tijdens deze periode de bouwpraktijk met betrekking tot het gebruik van kalk en kalkmortel slechts in geringe mate. De verschillende samenstellingen en doseringen van de mortel berusten op regionale verschillen die op hun beurt beïnvloed worden door de beschikbare (locale) grondstoffen. Transport van materialen blijft duur.

Er komt met de verdere verstening van de architectuur meer aandacht voor de kleurige afwerking van de gevels en aandacht voor verzorgd voegwerk. Zowel voor de pleisters als voor de verven was kalk een begeerde grondstof. Hoewel recent aan het licht is gekomen dat de Romeinen soms al navoegwerk maakten, was dit in de Nederlanden nog een geheel onbekend fenomeen. Er is hier nog geen sprake van naderhand uitgevoerd voegwerk. Tijdens het metselen wordt de voegruimte in één handeling gevuld en direct afgestreken (doorstrijkwerk). Soms wordt het voegoppervlak voorzien van een daggestreek. Het is pas later dat men bij de (nieuw)bouw van metselwerk met aparte species de voegen zal navullen. Ook voor dergelijke voegmortels werd dan vaak kalk met de nodige toeslagstoffen en eventueel pigmenten verwerkt.

2.6 Kalk in de zeventiende eeuw volgens Perrault

Het commentaar van Perrault bij de vertaling die hij maakte van *De tien boeken over architectuur* van Vitruvius geeft een goed beeld van de interpretatie die men in de zeventiende eeuw geeft aan de processen van de kalkcyclus. Perrault steunt op de principes van het *iatro-chemische* gedachtegoed om Vitruvius’ redenering te verbeteren. Dit gedachtegoed over de samenstelling van de materialen (de voorloper van onze *scheikunde*) vangt aan tijdens de eerste helft van de zestiende eeuw. Paracelsus was er een voorloper van. Voor hem bestonden de stoffen uit drie elementen: kwik, zwavel en zout. Ontologisch gesproken, stelde kwik het actieve geestelijke, zout het passieve lichamelijke en zwavel het tussen beide bemiddelende voor. Gebruikmakend van dat verklaringsmodel stelt Perrault dat er wel wat waarheid schuilt in de uitspraak van Vitruvius aangaande wat er gebeurt wanneer de kalk gebrand en ge-

82 Du Colombier 1953.
84 Dijksterhuis 1980, p. 308.
Kalkboek

blust wordt en later uithardt. Het waterverlies dat volgens Vitruvius de oorzaak is van het verlies aan sterkte is echter, volgens Perrault, het verlies aan vluchtige en zwavelhoudende zouten door het branden van de kalksteen. Het uitharden is het gevolg van het weer opnemen van deze zouten. De toename van de sterkte door het mengen van de kalk met het zand en de stenen is, nog steeds volgens Perrault, het gevolg van de uitwisseling van de zouten tussen het zand, de stenen en de kalk. De uitharding (carbonatatie) kan zeer lang duren omdat het lang kan duren voor alle zouten, die uit de steen en het zand moeten komen, weer opgenomen zijn door de kalk.

Het is opvallend dat hier sprake is van vluchtige zouten, wat men zou kunnen associëren met iets dat uit de lucht wordt opgenomen. Maar volgens Perrault komen deze bij de uitharding noodzakelijke bestanddelen uit het zand en de (bak)stenen. Dat koolzuurgas uit de lucht een rol speelt kon hij nog niet vermoeden, omdat koolzuurgas nog niet bekend was.

2.7 Kalk in de achttiende eeuw

Uit *Le guide de ceux qui veulent bâtir*, van de architect Nicolas le Camus de Mézières, blijkt hoe, op het ogenblik dat elders de chemische kennis beschikbaar komt om de hydraulische reacties te kennen, de *alchemie* nog steeds het werken met kalk beheerst. Het handboek noemt de beste vindplaats van kalksteen in de omgeving van Parijs (die van Senlis is de beste) en beschrijft de ovens. Voor het branden van de kalksteen wordt een oven gemaakt die binnenin elliptisch is. Goede kalksteen onderscheidt zich volgens deze auteur van andere door het heldere geluid dat men krijgt bij het tegen elkaar slaan van de gebrande kalkstenen, door de stevigheid en door de egale kleur die melkwit moet zijn. Goede kalksteen geeft gebrande kalk die goed geblust kan worden en tweemaal zoveel kalkdeeg geeft als het volume van de gebrande kalk. De kalk wordt beter door hem te laten rusten.

Het zand voor de mortel moet zuiver zijn en niet te fijn. Zeezand is af te raden, evenals het gebruik van zavel (leemhoudend fijn zand). Zavel maakt de mortel *vettig* waardoor de aannemer geneigd is te weinig kalk in de mortel te doen zodat de mortel uiteindelijk niet goed bindt en verzandt: *...si toutes les parties 'paroissent' bien liées,...*
Historische bindmiddelen

Cement bestaat volgens deze auteur uit kalk waaraan gemalen keramiek is toegevoegd. Goed gebakken klei, zoals deze van aardewerk en dakpannen, bindt het best met de kalk.86

De mortel, tenslotte, bestaat uit één derde kalk en twee derden zand, het geheel goed gemengd. Men mag er niet teveel water aan toevoegen, wat erg moeilijk is. \textit{…vous aurez de la peine à faire valoir ce principe…}87 De verwerkbaarheid van de mortel hangt dus niet alleen af van de hoeveelheid water die wordt toegevoegd maar ook van de mate waarin de mortel wordt \textit{beslagen} en gemengd. Dat is voor kalkmortel nog steeds het geval! De kalk moet minstens een aantal dagen voor gebruik zijn geblust en de mortel wordt het best bereid de dag \textit{vóór} hij wordt verwerkt.

De uitharding van de kalkmortel duurt soms enkele jaren en heeft een zekere vochtigheid nodig. De mortel mag daarom niet uitdrogen want dat vertraagt de binding: \textit{…s’il (le mortier) n’étoit pas surpris par la hâle et par une sécheresse trop prompte, il lui faut des années pour se faire, se mûrir, devenir aussi dur que la pierre et s’identifier avec elle…}88

Bij de voortgang van het bouwen moet rekening worden gehouden met de tijd die nodig is voor het uitharden van de mortel. Zo worden, nog steeds volgens de \textit{Guide de ceux qui veulent bâtir…}, wanneer men niet de tijd heeft om op het binden van de mortel te wachten, ijzeren staven onder de lateien (\textit{platte bande}) gestoken.89

Adriaan Bомнене, de stadsbouwkundige van Veere (Zeeland) in het midden van de achttiende eeuw, heeft zijn bevindingen op schrift gesteld. Uit het \textit{Testament van Bомнене}90 blijkt dat de verschillende soorten kalk, zoals Doornikse of Luikse kalk,

86 Nu weten we beter waar het in dit verband om gaat: namelijk om amorf silica. Amorf wil zeggen, dat niet kristallijn is, maar de moleculen zonder duidelijke structuur op elkaar aansluiten, zoals in een vloeistof en in glas. In plaats van \textit{amorf} noemen we deze structuur daarom ook \textit{glasachtig}. Kwarts is daarentegen juist de kristallijne vorm van silica. Of kwarts nu amorf of kristallijn is, in beide gevallen is de chemische formule SiO\textsubscript{2}.

Amorf silica blijft over wanneer de kleimineralen bij het branden hun chemisch gebonden water hebben verloren en bovendien een zekere tijd bij de voor de betreffende kleisort optimale temperatuur zijn gebleven. Het gehalte aan amorf silica is bij illitische klei optimaal bij het branden op circa 600 °C. Bij kaolinitische klei is dat omstreeks 900 °C. Worden deze kleisorten (voldoende lang) op hogere temperaturen gebrand, dan neemt het gehalte amorf SiO\textsubscript{2} af. In Nederland wordt vooral illitische klei gebruikt bij de baksteenfabricage; overigen bestaat de grondstof voor de baksteenfabricage voor een belangrijk deel uit kwarts.

87 \textit{Le Camus de Mézières 1972}, p. 93.
88 \textit{Le Camus de Mézières 1972}, p. 94.
89 \textit{Le Camus de Mézières 1972}, p. 117.
90 Bомнене 1988, p. 77.
specifieke toepassingen kenden, dat ze niet voor alle toepassingen geschikt waren, en dat kalk lang niet altijd goed werd verwerkt.

Figuur 6
Opnamen uit 1978 van de kalkovens in Hasselt. © Rijksdienst voor de Monumentenzorg.
Historische bindmiddelen

Hij neemt bijvoorbeeld waar dat voegwerk gemaakt met Doornikse kalk in Zeeland veel sneller verweert dan in Vlaanderen... alhier te lande verwerkt aan opgaande gebouwen, soo zijn de voegen seer ras uitgegeeten door de lugt en verteert. Hij schrijft dat toe aan het verschil in zand en de zoute zeewind in Zeeland. In Vlaanderen gebruikt men geel doorzoet landzand dat grof van korrel is, terwijl in Nederland fijn zand wordt gebruikt dat zout is. En... soo hebben wij in Zeeland veel straffer lugt beset met zeedampen.

Volgens Bommenee wordt in Zeeland de mortel vaak op verkeerde wijze bereid en is er onvoldoende toezicht. ’t is ordinaar met vele baasen: ’t is goet genoeg voor een opperman als ’t maar de gedaante van een mensch heeft, en de metselaarsknegt die het zijn funksie is om na te sien, die hebben ’t meeste gros selve geen verstand van en soo deselve daar nog van weeten, soo sullen sij ijterlijk daarvan seggen: ’Gij moet de mortel wat beter doorsteeken’.

Naast het gebruik van steenkalk beschrijft hij het gebruik van schelpkalk. Schelpkalk wordt gebrand met Friese of Groningse turf en het is schraler dan steenkalk. In Zeeland wordt het voornamelijk gebruikt binnenshuis, voor grauwe gevels en voor daken. In noord Nederland en in enkele grote steden wordt schelpkalk voor allerlei werk toegepast. ... In Hollandt, Vrieslandt, Overijsel, Gronningen in de Ommelanden en in Drent en Twent, etc., wert alle metzelwerken gemaakt sonder eenig onderscheyt met schelpkalk, soowel waaterwerken als opgaande gebouwen, soowel in de lugt als binnensbuys ... en ... door deekens en overluyden van de metselaarsgilden binnen de steede Haarlem, Leyden, Delft, Rotterdam en ’s Gravenhage, etc., dat sij alle metselwerken maaken sonder onderscheyd van wat natuer of conditie deselve mogten sijn, met schulpkalk.

Bommenee gelooft dat schelpkalk in oude tijden werd geput (in de rot gezet). Wanneer voor waterwerken kalk wordt gebruikt, gemengd met cement (tras), wordt volgens Bommenee vaak te weinig tras gebruikt waardoor de mortel te vet is.

Gewoonlijk wordt volgens hem een zak kalk gemengd met een halve zak tras. Naar zijn mening kan voor waterwerken beter een sterke trasmortel worden gebruikt, bestaande uit vier zakken steenkalk en drie zakken tras. Schelpkalk is zyns inziens schraler dan steenkalk en voor een sterke trasmortel is het goed wanneer op een zak kalk een halve zak tras wordt toegevoegd.

2.8 Van kalk naar andere bindmiddelen voor mortel

De achttiende eeuw is een scharnierperiode omdat daarin de aanzet wordt gegeven tot de ontdekking van de hydraulische reactie. Van deze reactie werd reeds eeuwen geprofiteerd, maar men had deze nog niet begrepen op de manier waarop we dat tegenwoordig doen (wat niet betekent dat de op basis van ervaring opgebouwde empirische kennis minderwaardig zou zijn).
Kalkboek

Het *traditionele* gebruik van luchtkalk wordt in deze periode evenwel voortgezet en vastgesteld is dat de verfijnde onderscheiden die we bijvoorbeeld bij Vitruvius terugvonden ook in bouwbestekken uit de achttiende eeuw kunnen worden teruggevonden. Mortel voor funderingen wordt gemengd met tras (zogenaamde Hollandse tras of tras van Andernach), terwijl bovengronds werk geen tras behoeft, zo schrijven de *lastenboeken* voor de bouw van de Bourlaschouwburg in Antwerpen voor.

De kalkmortels blijven in onze ogen nog erg rijk aan kalk. In bestekken uit de achttiende en negentiende eeuw vindt men verhoudingen van twee delen zand op een deel kalk of zelfs verhoudingen van één op één.

Ook voor voegwerk wordt kalk toegepast en de architecturale expressie wordt ermee versterkt. Zo blijkt uit een studie van de gevels van het College Villers in Leuven dat een *rode* gevel wordt gebouwd door tussen de rode bakstenen met een rood gepigmenteerde voegmortel te voegen en niet door de gevel te sausen met een (rode) kalkverf.

In Nederland, waar het gebruik van tras het mede mogelijk heeft gemaakt dat in deze lage landen belangrijke waterwerken konden worden uitgevoerd, komen in bestekken verschillende namen terug die de speciale eigenschappen van bepaalde mortels en bindmiddelen aanduiden. Zo is er sprake van Dordtse cement voor mortels aangemaakt met tras en kalk.

Amsterdams of Caziuscement

Om minder afhankelijk te zijn van de invoer van tras ging men in de tweede helft van de achttiende eeuw op zoek naar alternatieven voor tras. Deze zoektocht werd mede ingegeven door de al maar stijgende prijs van tras. Die prijs steeg in de jaren 1795 en ’96 van drie naar veertien gulden per dordtse traston.

In 1783, dus al voor die prijsexplosie, leidden de hoge kosten van tras al tot de uitvinding van zogenaamd *Amsterdams cement* door Adriaan de Booys. Dit roodachtige poeder met hydraulische eigenschappen verkreeg men door uit het IJ gebaggerde klei te bakken en na afkoeling fijn te malen. De klei, die afkomstig was uit de Amsterdamse haven, werd voor het branden eerst op land uitgestort en gedroogd. Dat werd dan ook wel *beklonken zuivere molenklei* genoemd. Voor de pro-

91 Van de Vijver 1997 I.
92 Van de Vijver 1997 I.
93 Van de Vijver 1997 II.
ductie van Amsterdams cement werd in 1790 in Amsterdam een fabriek opgericht die, door gebrek aan belangstelling, in 1800 weer moest sluiten.

Uit een verslag van het Koninklijk Nederlandsch Instituut blijkt dat de stof zeer geschikt is om waterdichte werken te maken. De stof versteent volgens dit verslag echter niet zo snel als tras, maar na dertien weken is er geen verschil meer.96 Uit een in het verslag aangehaald vergelijkend onderzoek, uitgevoerd tijdens de sloop van de ovens van de Amsterdamse fabriek – waarvan de eerste met tras was gemaakt en de tweede met Amsterdams cement – blijkt dat Amsterdams cement een betere hechting aan de stenen had en dichter was dan de Duitse tras.

In navolging van Booys produceerde U.W.T. Cazius uit Utrecht sinds 1792 ook een kunstcement. Hij gebruikte naar eigen zeggen klei uit de Vaartsche Rijn en produceerde een rode en een grijze cement.

Op 1 december 1810 kreeg een commissie opdracht van de minister van Binnenlandse Zaken om onderzoek te doen naar de kwaliteit van Amsterdams cement, rood en grijs Utrechts cement en Dortse tras. In het verslag van dat onderzoek lezen we dat een trasmortel na dertien weken onder water verharden een trekkracht van 1031 pond kan opnemen, het Amsterdams cement 1053 pond, het rode Utrechts cement 466 pond en het grijze geen.

\textbf{Ontdekking van de hydraulische reacties}

Hoewel de Grieken en de Romeinen er reeds in slaagden mortels te maken die onder water hard konden worden is de chemische verklaring van de hydraulische reactie te danken aan de proeven die Smeaton in 1756 verrichtte bij zijn zoektocht naar een procedé voor de vervaardiging van een kalk die waterbestendig moest zijn. Uit de chemische analyse van de kalksteen die gebruikt werd voor hydraulische kalk concludeerde hij dat \textit{de aanwezigheid van klei in de kalksteen … de belangrijkste, misschien wel de enige, bepalende factor … voor de hydrauliciteit [moet zijn]}.96

De invloed van de Romeinse traditie moet deze vondst vertraagd hebben, aangezien deze voorschreef om zuivere kalksteen te gebruiken, die dus weinig hy-
draulische onzuiverheden zoals klei bevatte. De steen werd immers gekeurd op zijn gewichtsverlies bij het branden. Dat moest één derde van het gewicht van de steen bedragen.97

2.9 Kalk en andere bindmiddelen in de negentiende eeuw

Een nieuwe stap in deze ontwikkeling was het Roman cement, ook wel Parkers cement genoemd. Grondstof daarvoor was mergel, een kalksteen met een hoog percentage kleimineralen. (De Nederlandse mergel – Maastrichter steen – is eigenlijk geen mergel, maar juist een tamelijk zuivere kalksteen.) Voor de vervaardiging van Roman cement werd mergel gebrand (op een lagere temperatuur dan portlandcement, zodat geen klinkervorming plaats vond). Dat leverde een natuurlijk hydraulisch bindmiddel op, met een hoog percentage klei mineralen. Parkers cement werd gepatenteerd in 1796.

Roman cement is in de negentiende eeuw voor zover bekend geproduceerd en toegepast in landen als Engeland, Frankrijk, Oostenrijk, Duitsland en Polen. Er zijn geen toepassingen in de Nederlanden bekend.

Rond 1812 toonde Vicat tenslotte aan dat de hydrauliciteit van het bindmiddel het gevolg is van het samen branden van kalk en bestanddelen van klei. Inderdaad, onder invloed van de warmte is er eerst ontwatering van de klei, vervolgens een chemische ontbinding van de kalk en tenslotte een chemische binding tussen de levende kalk (CaO) en het siliciumoxide, ijzeroxide en aluminiumoxide uit de kleimineralen. Afhankelijk van het kleigehalte, de baktemperatuur en de duur van het branden loopt de reactie meer of minder ver door en dat bepaalt de graad van hydrauliciteit.

De werken van Vicat vormen de wetenschappelijke basis voor al het later verrichtte onderzoek naar de hydrauliciteit van bindmiddelen. Het materiaal dat hij verkreeg was een product dat men zou kunnen plaatsen tussen het kalkhydraat en de hedendaagse portlandcement. Het gehalte aan calciumoxide was na het branden nog zo hoog, dat deze cement nog moest worden geblust. Bij deze behandeling werd de vrije calciumoxide omgezet in een kalkhydraat. Omdat anders de hydraulische

97 Krauss s.a. en Furlan 1975.
componenten zouden uitharden tijdens het blussen, mocht daarbij niet te veel water worden toegevoegd.

De door Smeaton en Vicat toegepaste onderzoeksmethoden getuigden van het nieuwe wetenschappelijke denken. Na de natuurfilosofie uit de oudheid (Vitruvius) en het *iatro-chemische* denken van Perrault wierpen de moderne wetenschappen een nieuw licht op de fenomenen die ten grondslag liggen van de uitharding van kalk en hydraulische bindmiddelen. De volledige kalkcyclus werd zo steeds beter begrepen.

Het handboek van Brade

In de discussie over het verschil in kwaliteit tussen steenkalk en schelpkalk, die dan al velen jaren gaande is, spreekt ook Brade in zijn Bouwkundig Handboek geen
duidelijke voorkeur uit voor het ene of het andere type kalk.98 De schrijver stelt dat beide goed zijn, blijkens de vele aloude gebouwen die er mee zijn gemetseld. Steenkalk, zo zegt hij, kan meer zand verdragen dan schelpkalk. Een deel steenkalk op vier delen zand tegen een deel schelpkalk op drie delen zand. Wanneer de prijs van beide gelijk is, zou de voorkeur uitgaan naar steenkalk. De schrijver meent dat vooral bij waterdichte werken toch beter steenkalk kan worden gebruikt. Toch moet men het gebruik van schelpkalk zeker niet afraden, mede omdat het zich makkelijker laat verwerken dan steenkalk. Het vermeende probleem van vochtdoorslag bij schelpkalk komt niet zozeer door de kalk zelf als wel aan het gebrek aan tras of een te veel aan zand: ... Doch daar de schelpkalk ook zeer goed en deugdzaam werk oplevert, en aan een groot aantal ingezetenen een bestaan verschafte, vermeenen wij derzelver gebruik, waar zij maar eenigszins gebezigd kan worden, niet te moeten afraden, te meer, daar zij zich met minder moeite van de steenkalk bewerken laat; komende het gebrek van het doorslaan der vochtigheid, hetwelk men aan deze kalk dikwijls wil bemerkt hebben, weligt niet zoo zeer van de schelpkalk zelf, als wel daarvan, dat zij met te weinig tras, of te veel zand is vermengd geworden.

Cement

De betekenis van de term cement is in de negentiende eeuw nog niet eenduidig. Enerzijds wordt het gebruikt voor hydraulische kalkmortels en anderzijds voor natuurlijke en synthetische puzzolanen.

[Onder] cement verstaat men de vermenging van kalk met zoodaanige stoffen, die aan dezelbe de eigenschap geven, om onder water te verharden of te versteenen, alhoewel men dikwijls in de praktijk aan deze stoffen zelve oneigenlijk dezen naam geeft. Cementen zijn meest van eenen vulkanischen aard, hetzij dat zij natuurlijke of kunstmatige branding ondergaan hebben.99

De in 1827 meest gebruikelijke cementen (puzzolanen) zijn volgens deze auteur: Pozzolaanaarde, Andernachse tras, Amsterdams cement, en Doornikse as. Doornikse as (Doornikische asch, cendrée de Tournay) bestaat uit het as van de steenkolen uit de Doornikse kalkovens, vermengd met fijngestampte stukjes gebrande kalksteen. Brade gaat in zijn handboek uitvoerig in op proeven die in Nederland en omringende landen worden gedaan om vast te stellen welke bestanddelen van de cementen verantwoordelijk zijn voor het hydraulische gedrag. Volgens hem bevatten de cementen allemaal dezelfde bestanddelen: alminnaarde, kiezelaarde, kalk en ijzerzuurzsel maar in verschillende verhoudingen (zie tabel 3).

98 Brade 1827, p. 55.
99 Brade 1827, P. 63.
Hij concludeert dat om cementen te maken die onder water direct verharden, kalk moet worden gemengd met stoffen met een zo klein mogelijk deel aan aluin-aarde (aluminiumoxide) en magnesia (magnesiumoxide) en een zo groot mogelijk deel aan metaalverzuresel (ijzeroxides) en kiezelaarde (siliciumoxide).\(^\text{100}\)

Het Bouwkundig Magazijn

Nederland was in het midden van de negentiende eeuw al bekend om de uitvoering van waterbouwkundige werken. Voor het metselwerk daarvan gebruikte men een mortel bestaande uit tras en kalk. De tras werd ingevoerd uit Andernach in Duitsland maar werd in die mate met Nederland vereenzelvigd dat er vaak sprake was van *Hollandse tras*. Dordrecht was een belangrijk handelscentrum van tras en over de kwaliteit van de Dordtse tras werd gewaakt door keurders.\(^\text{101}\)

In *Bouwkundig Magazijn of Schetsen voor Handwerklieden*,\(^\text{102}\) uitgegeven in Gorinchem in 1843, worden verschillende mortelsamenstellingen gegeven die alle gebaseerd zijn op kalk (steenkalk zowel als schelpkalk), zand en eventueel tras.

Gebruikmakend van de enorme voorraad schelpen aan de Nederlandse kusten had men daar reeds een lange traditie in het branden van schelpen voor de vervardiging van kalk. Kalk gebrand van schelpen is in chemisch opzicht vergelijkbaar met kalk gebrand van zuivere kalksteen (zie hoofdstuk 1, § 1.2). Er is sprake van volgende mortels:

- **Gemeene menging** bestaande uit kalk en zand voor muren die droog bleven;
- **Basterd tras** bestaande uit kalk, zand en tras voor metselwerk even onder en boven de grond;

\(^{100}\) *Brade 1827*, p. 68.

\(^{101}\) *National s.a.*

\(^{102}\) *Metselspetie 1843*.
• **Sterke tras**, een mengsel van kalk en tras (zonder zand), voor constructies die in het water stonden.

De hoeveelheid kalk ten opzichte van de hoeveelheid zand varieerde tussen anderhalf en twee delen kalk per deel zand. Dat is bijzonder veel kalk in vergelijking met de hoeveelheid zand. Met hedendaagse kalk leidt dit tot een groot risico op krimp. Er zijn aanwijzingen dat de kans op krimp vroeger lager was door het gebruik van kalk met een grotere korrels (kleinere specifieke oppervlakte), kalk die maar ten dele was gebrand en onzuiverheden bevatte of kalk die met nat zand werd geblust en vrij snel werd verwerkt. Wanneer de kalk onvoldoende (onvolledig) was gebrand is strikt genomen een deel van de zogenaamde kalk eigenlijk inert materiaal en dient dat deel te worden bijgeteld bij het aandeel zand. Wanneer van een mengsel van twee delen kalk en één deel zand slechts de helft van de kalk is gebrand, is er feitelijk sprake van één deel (reactieve) kalk en twee delen aggregaat (dat voor de helft bestaat uit niet-reactieve kalk en voor de andere helft uit zand). Door met nat zand te blussen kan men de krimp beperken. De voor de verwerking noodzakelijke consistentie kan met minder water bereikt worden omdat de specifieke oppervlakte van de kalk minder is dan bij gebluste en lang *in de rot* gezette kalk.

In verband met de invloed van de samenstelling op de carbonatatie wordt volgende aanbeveling gedaan: *Men moet ook, bij de vermenging der metselspecie, het jaregtjide in aanmerking nemen. Daarom neemt men in het voorjaar de specie vetter, als tijd hebbende om te droogen, en in het najaar wat meer zand, om de versteening te bevorderen. Dergelijke verschillen in samenstelling hebben uiteraard wel consequenties voor de uiteindelijke eigenschappen van het metselwerk.*

Bij schelpkalk wordt over het algemeen een groter aandeel kalk ten opzichte van zand voorgesteld dan bij gebruik van steenkalk. Dat kan zowel te maken hebben met een mogelijk groter aandeel verontreinigingen in de schelpkalk (bijvoorbeeld met zand en as), maar mogelijk ook met productieprocessen waardoor schelpkalk toentertijd mogelijk minder goed gebrand werd dan steenkalk.

Het handboek van Deviller

Uit een handboek van 1869, uitgegeven in Bergen,* blijkt dat de opkomst van cement in België veel sneller verliep dan in Nederland. Er werd voor mortel luchtkalk, hydraulische kalk en ook cement als bindmiddel voorgeschreven. De carbo-

103 *Wisser 1988 en Callebaut 2000 I.*

104 *Devillez 1869.*
natatie wordt hier als een diffusieproces beschreven waarbij de opname van het koolzuurgas ... langzaam voortschrijdt van de oppervlakte naar de kern, zoals de warmte in een massa die langs buiten wordt opgewarmd.

Devillez beschrijft het belang van het vochtig houden van metselwerk waarin hydraulische mortel wordt gebruikt. Maar dat regelmatig bevochten is ... ook nuttig voor mortel met vette kalk, want een snelle uitdroging doet de mortel verpulveren en de vochtigheid bevordert de actie van het koolzuur.

Het zand mag voor luchthardende kalk niet te fijn zijn want dan is de mortel niet poreus genoeg om het koolzuurgas te laten diffunderen. Bastaardmortel wordt hier beschreven als zijnde een kalkmortel waar cement of puzzolaan toegevoegd werd.

Die Mörtel und ihre Grundstoffe volgens Hauenschild

In *Die Mörtel und ihre Grundstoffe* uit 1883 werden de fasen in de toename van de druksterkte beschreven: de kalkmortel droogt uit en de uitdroging zorgt reeds voor een zekere mechanische sterkte. Daarna volgt de carbonatatie waarbij calciumcarbonaatkristallen neerslaan.

De porositeit van de baksteen is volgens dit boek medebepalend voor de hoeveelheid water die aan de mortel moet worden toegevoegd. Hoe poreuzer de baksteen is, hoe meer water er nodig is. De auteur merkt op hoe bij het watertransport naar de baksteen de fijne kalkdeeltjes naar het contactvlak worden vervoerd waardoor de hechting wordt verbeterd tussen de baksteen en de mortel.

De auteur merkt voorts op, dat bij mortel met licht hydraulische kalk en mage-re kalk de mogelijkheid bestaat de kalk te blussen met (nat) zand. Het blussen met nat zand is een methode die zeer geliefd is bij de Italianen en de Fransen, waar het gaat om de bereiding van mortel die gebruikt wordt in waterbouwkundige werken.

Kalkcementmortel blijkt op dat ogenblik de meest gebruikte en de meest economische oplossing te zijn voor metselwerk. Volgens Dyckerhoff gedraagt een mortel bestaande uit portlandcement en kalkdeeg met veel zand zich beter – wat betreft waterbestendigheid, hechting en druksterkte – dan een mortel bestaande uit gelijke delen cement en zand.

105 **Hauenschild 1883.**

Deze werkwijze is enigszins te vergelijken met de productie van kalkzandsteen. Daarbij worden ongebluste kalk, water en zand gedurende een etmaal in een reactievat opgeslagen, waardoor calciumsilicaat ontstaat en de zandkorrels aan elkaar kitten. Mogelijk ontstaat ook bij het blussen met nat zand een zekere hoeveelheid calciumsilicaat.

106 Deze werkwijze is enigszins te vergelijken met de productie van kalkzandsteen. Daarbij worden ongebluste kalk, water en zand gedurende een etmaal in een reactievat opgeslagen, waardoor calciumsilicaat ontstaat en de zandkorrels aan elkaar kitten. Mogelijk ontstaat ook bij het blussen met nat zand een zekere hoeveelheid calciumsilicaat.

107 Geciteerd in **Hauenschild 1883.**
Andere negentiende-eeuwse handboeken

In *Constructions-Elemente in Stein* wordt eveneens gewezen op de rol van het zand. De porositeit moet de indringing van het koolzuurgas toelaten voor de carbonatatie.\(^{108}\) Het zand is ook nodig om een oppervlak te verkrijgen waarop de calciumcarbonaatkristallen zich kunnen afzetten. Zonder zand is de kalk geen hechtmiddel maar treedt de kalk slechts op als spanningsverdeler.

Basishandleidingen zoals die van Van der Kloes tonen aan dat er in zijn tijd een waaier aan bindmiddelen bekend is.\(^{109}\) De gebruikte termen kunnen echter wel eens verschillen met de hedendaagse. Zo gebruikt Van der Kloes het woord waterkalk, als hij een sterk hydraulische kalk bedoelt. De snelle ontwikkeling en opkomst van cement liggend ook aan de basis van een keur aan gebruikte termen voor verschillende soorten cement: *cement roman* of *limietkalk*, *natuur portlandcement*, *brikkenmeel*, *cement van Cassius*, *tras*, *slakken- of puzzolaan cement* enzovoort.

2.10 De overweldigende opkomst van portlandcement

In 1824 neemt Joseph Aspdin, een metselaar uit Wakefield, een octrooi op een cement waarvan hij zei dat deze zo hard was als de steen van Portland. De samenstelling van dit *portlandcement* is sindsdien sterk geëvolueerd. L.C. Johnson (1835) ontdekt dat de klinker die ontstaat door het sinteren (gedeeltelijk smelten) van de kalk en de kleiachtige bestanddelen, veel betere resultaten geeft, als deze maar fijn gemalen wordt. Wat wij nu kennen als portlandcement is het product dat wordt verkregen door het malen van de klinker die ontstaat uit het verhitten tot 1450 °C van de grondstoffen, waaraan gips – als bindingsvertrager – is toegevoegd.

Sinds de negentiende eeuw zijn de basisprincipes van de productie van portlandcement niet veranderd, maar wel zijn door verder wetenschappelijk onderzoek allerlei verfijningen en varianten van dit cement ontwikkeld.

In de negentiende eeuw is België een grote exporteur van hydraulische kalk. De kalk werd in de streek van Doornik ontgonnen en gebrand. Daarvan getuigen nog verschillende grote kalkovens.\(^{110}\) Vanwege de daarvoor geschikte samenstelling van de daar ontgonnen kalksteen werd later overgeschakeld op de productie van cement, een industrietak die daar nog steeds belangrijk is.

\(^{108}\) Marx 1886.
\(^{109}\) Van der Kloes 1893.
\(^{110}\) Chantry 1979.
Vanaf het begin van de twintigste eeuw komt de portlandcement als bindmiddel sterk opzetten en vervangt daarbij gaandeweg de luchthardende en hydraulische kalk in de metselmortel in geheel Europa en de Verenigde Staten van Amerika. Het schema van figuur 5 vat deze evolutie van de bindmiddelen samen.

2.11 En stilaan raakt kalk in de vergeethoek

Vanaf het einde van de negentiende eeuw en zeker vanaf het begin van de twintigste eeuw nemen portlandcement voor de metselmortel en gips voor het pleisterwerk de overhand. De opkomst van de portlandcement is in veel opzichten revolutionair. Het sprak tot de verbeelding van veel architecten en bouwers dat met de portlandcement materialen konden worden gemaakt die al na enkele dagen zeer sterk werden. Kalkmortel deed er veel langer over om uit te harden en haalde nooit zo’n grote druksterkte. De (toen) kleine cementindustrie is ook zeer vooruitziend geweest door een uniform systeem van kwaliteitsnormen te organiseren, iets waarin de kalkindustrie niet geslaagd was. De homogeniteit van de kunstmatig vervaardigde portlandcement was een groot voordeel bij de uitwerking van dergelijke normen. Bij de productie van kalk, die meer afhankelijk was van de gebruikte grondstoffen, lag een dergelijke normalisatie toen niet voor de hand. Tenslotte heeft de cementindustrie een geweldige markt kunnen veroveren dankzij haar wereldwijde organisation met een uitgebreid onderzoeksprogramma en een belangrijke promotieactiviteit.

Het geloof in de grote sterke en de snelle uitharding van portlandcement heeft ertoe geleid dat veel architecten in het begin van de twintigste eeuw het aspect duurzaamheid uit het oog verloren. De mortel werd in de Verenigde Staten in de periode 1915 - '30 steeds rijker aan cement. Kort daarop ontstond een epidemie van lekkend metselwerk in gebouwen die met zandcementmortels waren gebouwd. Een nieuwe commerciële activiteit zag het daglicht: de waterdichtingsfirma’s. De brosheid, de grotere krimp en de minder goede verwerkbaarheid van deze (rijke) cementmortels leidden ertoe dat de hechting van de mortel aan de baksteen minder volledig was, waardoor er meer gevaar was voor waterdoorslag door het metselwerk. Daarop ging in de Verenigde Staten de slinger weer de andere kant op en werd weer meer kalk in de metselmortel gebruikt.

Verschillende andere pogingen werden ondernomen om de verwerkbaarheid van de mortel te verbeteren zonder kalk. Hieruit is de masonry cement ontstaan, be-

112 Effects 1979.
staande uit cement waaraan (goedkopere) gemalen kalksteen werd toegevoegd. De
chemische industrie ontwikkelde daarna luchtbelvormers en superplastifieerders om de
verwerkbaarheid van de cementmortels te verbeteren. Het gebruik van kalk en
Portlandcement als bindmiddel blijft echter vrij courant in de Verenigde Staten
alhoewel er een hevige controverse bestaat tussen de voorstanders van masonry cement
en die van lime-cement mortar.\footnote{Boynton 1966, p. 392.}

In België is het gebruik van kalk in metselmortel eerder afgenomen. Toch lij-
ken een aantal onderzoeken en trends in de bouw te wijzen op een weer stijgende
belangstelling voor de eigenschappen van kalk. De interesse in de restauratiesector
tezamen met de aandacht voor duurzame bouwen lijken de laatste jaren toch een
kentering in de vermindere aandacht voor kalk te veroorzaken. De samenstelling
van dit boek is er ten dele het bewijs van.

3 De vicieuze cirkel doorbroken

Met de opkomst van Portlandcement als bindmiddel van mortels is ook de kennis
van kalkmortels en de vaardigheid om er mee om te gaan grotendeels verloren ge-
gaan. De bouwers van nu weten nog maar nauwelijks wat kalk precies is. Wat maakt
kalk anders dan bijvoorbeeld portlandcement. In het volgende hoofdstuk komt het
materiaal kalk uitgebreid aan de orde. Het verschil tussen luchtkalk en hydraulische
kalk wordt hierbij uiteengezet. Maar met kalk alleen maak je geen mortel. Daarvoor
is altijd een toeslagstof nodig en dat is in vrijwel alle gevallen zand. Soms wordt ook
een zogenaamd puzzolaan toegevoegd, bijvoorbeeld tras. Ook deze ingrediënten
van een kalkmortel zullen daarom in het volgende hoofdstuk de revue passeren. De
vicieuze cirkel, dat we kalkmortels niet kennen, omdat we ze niet meer toepassen
en niet meer toepassen omdat we ze niet meer kennen, wordt zo wellicht doorbro-
ken.
Scheppend kalk in vergankelijkheid

stromend water draagt kalk naar de plaats van rust om te bezinken in de stroom van tijd van vergankelijkheid,

organismen bouwen hun skelet uit kalk in water door en voor de tijd die resteert, tot 't skelet daalt naar de bodem van 't meer,

schelpdieren groeien in de woelend voedende zee, leven, sterven, schelpen op 't strand geworpen van de lage landen aan de zee.

de tijd verstilt, de tijd verstrijkt, miljoenen jaren passeren het devoon op weg door het turoon tot nu, 't kwartair dat gaande is.

de aarde plooit, de aarde verheft het kalkbed naar de mens, de mens die schept, de mens die bouwt, de mens die kalk brandt en blust, die zeeft en mengt met zand, de mens die specie voor het bouwen treedt, de mens die balt de hand en voegt het land,

de mens die bouwt voor nu en later voor de eeuwigheid of slechts voor de tijd van 't bestaan van 't monument van tijd, in eeuwigheid.

de tijd die slijt, de tijd die schaft aan bouwsels van de mens, de tijd die water draagt en kalk, ver heen naar het nieuwe eoceen waar opnieuw kalk in stromend water skeletten vormt voor nu en later, een nieuw begin van tijd in eeuwigheid waarin stromend water kalk draagt naar later.

Matth van Rooden
Van grondstof tot mortel

1 Inleiding

In dit hoofdstuk wordt vanuit een technisch kader ingegaan op wat een kalkmortel is en hoe die tot stand komt. Kalkmortel bestaat in principe uit kalk en zand. Kalk fungeert daarbij als bindmiddel en zand als verschralingsmiddel, onder andere ter voorkoming van overmatige krimp tijdens de verharding van de specie. Het bindmiddel kalk wordt verkregen door het branden en blussen van kalksteen of schelpen. Ter voorkoming van een mogelijke spraakverwarring: het woord *kalksteen* (de geologische benaming voor bepaalde soorten gesteenten) mag niet verward worden met het soort bindmiddel dat hieruit wordt vervaardigd, de *steenkalk*.

Aan te zwakke, of niet hydraulische kalk worden puzzolanen toegevoegd, wanneer een sterkere mortel is vereist of wanneer de mortel ook afgesloten van de lucht moet kunnen verharden. In § 2 van dit hoofdstuk zullen de grondstoffen waaruit kalkmortels worden samengesteld nader uiteen worden gezet. De productie van het bindmiddel kalk uit kalksteen en schelpen wordt beschreven in § 3, waarbij ook de historische productiewijzen ruimschoots aandacht krijgen. Na § 4, waarin het blussen van kalk zal worden behandeld, wordt in § 5 de handel en de distributie van kalk belicht: de kalk moet immers op bouwplaatsen aankomen! Wanneer over alle ingrediënten voor kalkspecie beschikt kan worden, kunnen deze gemengd worden tot een kalkspecie. In § 6 wordt uiteengezet waarop hierbij gelet moet worden en welke factoren bepalend zijn voor de prestaties van de uiteindelijk verharde kalkmortel. Het is vanzelfsprekend dat men eerst een goed beeld moet hebben van wat men van de mortel verwacht, voor men kan bepalen wat de samenstelling van de mortel moet zijn. Nadat de specie is verwerkt in het metsel- of voegwerk, zal deze gaan verharden. De processen die hiervoor verantwoordelijk zijn worden tot slot behandeld in § 7.

Gezien de aard van de grondstoffen voor kalkmortels hebben de paragrafen over kalksteen, zand en natuurlijke puzzolanen een geologisch karakter en zijn ze in het bijzonder gesteentekundig van aard. Het voert in het kader van dit boek te ver
om dieper in te gaan op de verschillende ontstaanswijzen van kalksteen en zandafzettingen, of op die van de vulkanische tufsteen, de grondstof voor tras. De lezer die geïnteresseerd is in meer gedetailleerde informatie over het ontstaan van de desbetreffende gesteenten kan te raden gaan in meer gespecialiseerde literatuur.114

2 Grondstoffen van kalkmortel

2.1 Kalksteen

Het ontstaan van kalksteen

Steenkalk wordt verkregen door het bij circa 900 °C branden van de grondstof kalksteen. Bij dit branden ontstaat calciumoxide, de \textit{levende kalk}, die vervolgens met water wordt geblust tot calciumhydroxide, ook wel \textit{portlandiet}, of kortweg \textit{kalk} genoemd. De grondstof kalksteen is een gesteente, dat ontstaan is door verharding van carbonataafzettingen (kalkafzettingen), die in water (in een zee of een meer) zijn gevormd door anorganische of organische processen. Door hun wijze van ontstaan, namelijk de opeenvolgende sedimentatie, of accumulatie van carbonaat, behoren de kalkstenen tot de zogenoemde \textit{sedimentaire gesteenten}.

Onder de \textit{anorganische processen} worden alle vormen van neerslag van carbonaat verstaan, waarbij het carbonaat ten gevolge van oververzadiging uit het water neer- slaat. Dit kan bijvoorbeeld optreden, wanneer koud zeewater, waarin carbonaat is opgelost, door de zon wordt opgewarmd. Omdat in warm water minder carbonaat kan oplossen dan in koud water, slaat het carbonaat neer in de vorm van zeer fijne carbonaatdeeltjes, die langzaam op de bodem van de zee neerdruppelen. Daardoor ontstaat daar een laag kalkmodder. Kalk kan ook op of in het sediment zelf neerslaan als cement tussen de korrels of als kalkbolletjes (\textit{peloïden}, \textit{oölieten}). Wanneer kalk neerslaat bij warme bronnen worden gesteenten als travertijn gevormd.

Bij \textit{organische processen} die het ontstaan van carbonataafzettingen tot gevolg hebben is de kalk afkomstig uit de skeletjes van zeediertjes, zoals schelpen, koralen, kalkalgen en zeer kleine, in het water zwevende organismen. Deze organismen maken zelf hun kalkskelet door het in het zeewater opgeloste carbonaat aan het water te onttrekken. Dit wordt omgezet in calciumcarbonaat, in de vorm van de mineralen \textit{aragoniet} en \textit{calciet}. Zowel aragoniet als calciet zijn calciumcarbonaatmineralen, maar ze zijn in verschillende kristalroosters uitgekristalliseerd. Calciet bevat naast calcium

Van grondstof tot mortel

ook meer of minder magnesium (respectievelijk hoog- of laag magnesium-calciet). De ionen van calcium-, magnesium- en bicarbonaat worden met de rivieren naar zee aangevoerd. Daarnaast neemt het zeewater ook koolzuurgas uit de lucht op. Wanneer de organismen afsterven, vergaan hun weke delen en blijven hun kalkskeletjes op de zeebodem achter. Zo kan een dik pakket van kalkskeletjes ontstaan.

De door neerslag of door accumulatie van kalkskeletjes gevormde carbonaatafzettingen zijn in eerste instantie ongeconsolideerd. Dat wil zeggen dat er geen samenhang bestaat tussen de componenten (skeletjes, schelpen, en dergelijke). De carbonaatafzettingen zijn nog niet verhard tot kalksteen. Pas na verstening (verkitting) van de carbonaatafzettingen wordt van kalksteen gesproken.

Het proces van verstening is een zeer langdurig proces. Ten gevolge van de druk van bovenliggende pakketten nog los materiaal treden veranderingen op in diepere delen van de afzetting. Daarbij worden de grove componenten (bijvoorbeeld schelpen) door een cement* aaneen gekit. Dit cement bestaat ook uit carbonaat en kan bijvoorbeeld door druk gerekristalliseerde kalkmodder zijn. Bij het verhardingsproces wordt al het aragoniet en hoogmagnesium calciet omgevormd tot laagmagnesium calciet. Veel later kunnen, ten gevolge van grootschalige geologische processen, zoals gebergtevorming, de oorspronkelijk horizontaal afgezette kalksteenlagen opgeheven en geplooid worden. Hierdoor zijn gebergten ontstaan van kalksteen, zoals bijvoorbeeld de Ardennen in België en het Juragebergte in Frankrijk. Het lijkt bijna onvoorstelbaar dat deze kalksteengebergten zijn opgebouwd uit gesteenten, die miljoenen jaren geleden op de bodem van een zee zijn gevormd.

Om de verschillen in de diverse kalksteenaflzettingen te kunnen begrijpen is het noodzakelijk te weten dat het aardoppervlak er gedurende de lange, geologische geschiedenis niet altijd heeft uitgezien zoals wij hem nu kennen. Continenten en oceanen groeiden aan en verplaatsten zich ten opzichte van elkaar. ‘Nederland’ en ‘België’ hebben daardoor niet altijd in de gematigde klimaatzone gelegen – voor lange perioden heerste er hier een subtropisch of zelfs tropisch klimaat. Wanneer het land dan werd overspoeld door de zee konden er bijvoorbeeld koraalriffen worden gevormd.

Het woord cement is hier in gesteentekundige zin gebruikt. In de geologie wordt met cement (ook matrix genoemd) het natuurlijke bindmiddel bedoeld, dat de samenstellende mineralen van een natuursteen aan elkaar kit. Dat is uiteraard een geheel ander materiaal dan de materialen die men in de bouwkunde met cement aanduidt.

83
<table>
<thead>
<tr>
<th>Era</th>
<th>Periode</th>
<th>Tijdvak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaenozoïcum of Neozoïcum</td>
<td>Kwartair</td>
<td>Holoceen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pleistoceen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,8 miljoen jaar geleden</td>
</tr>
<tr>
<td></td>
<td>Tertiair</td>
<td>Plioceen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Miocene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oligoceen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ecooceen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Palaeoceen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65 miljoen jaar geleden</td>
</tr>
<tr>
<td></td>
<td>Krijt</td>
<td>Senoon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Turoon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cenomaan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gault</td>
</tr>
<tr>
<td></td>
<td>Mesozoïcum of Secondary</td>
<td>Neocoom</td>
</tr>
<tr>
<td></td>
<td></td>
<td>141 miljoen jaar geleden</td>
</tr>
<tr>
<td></td>
<td>Jura</td>
<td>Malm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dogger</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>195 miljoen jaar geleden</td>
</tr>
<tr>
<td></td>
<td>Trias</td>
<td>Keuper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muschelkalk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bontzandsteen</td>
</tr>
<tr>
<td></td>
<td>Palaeozoïcum of Primary</td>
<td>231 miljoen jaar geleden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zechstein</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rotliegendes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>280 miljoen jaar geleden</td>
</tr>
<tr>
<td></td>
<td>Carbon</td>
<td>Bovencarbon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ondercarbon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>345 miljoen jaar geleden</td>
</tr>
<tr>
<td></td>
<td>Devoon</td>
<td>395 miljoen jaar geleden</td>
</tr>
<tr>
<td></td>
<td>Siluur</td>
<td>435 miljoen jaar geleden</td>
</tr>
<tr>
<td></td>
<td>Ordovicum</td>
<td>500 miljoen jaar geleden</td>
</tr>
<tr>
<td></td>
<td>Cambrium</td>
<td>570 miljoen jaar geleden</td>
</tr>
<tr>
<td></td>
<td>Proterzoïcum, Eozoïcum of Algonkium</td>
<td>2600 miljoen jaar geleden</td>
</tr>
<tr>
<td></td>
<td>Archaeozoïcum of Archæicum</td>
<td>4600 miljoen jaar geleden</td>
</tr>
</tbody>
</table>
Van grondstof tot mortel

In andere perioden, zoals in het Devoon, won soms het continent terrein op de zee en soms de zee op het continent, waardoor in deze tijd afwisselingen van kleiige (invloed land) en kalkige (invloed zee) afzettingen werden gevormd. Bovendien kon dit van plaats tot plaats sterk verschillen, zodat kalkriffen lokaal omgeven konden zijn met kleirijke sedimenten. Mengsels van carbonaat en klei verstenen uiteindelijk tot kleihoudende en kleirijke kalkstenen. Een kalksteen met 25-75% klei wordt in de gesteentekunde meld genoemd. Bij afwezigheid van klei ontstaan kleiloze car-
bonaatafzettingen die verstenen tot zuivere kalkstenen, zoals wit krijt.

In de periode die op het Devoon volgde, het Carboon, won het land het ten-
slotte langzaam van de zee. Dat zou uiteindelijk leiden tot de Carbonische steen-
koolafzettingen (van landplanten), maar al in de periode daarvoor werd er nabij de kust tussen het carbonaat veel meer organisch materiaal in zee afgezet (bijvoorbeeld zeelelies: crinoïden). Dat organische materiaal bleef in het gesteente bewaard. Zo ontstonden in de overgangsfase tussen het Devoon en het Carboon de zogeheten kolenkalken. De Belgische hardsteen (crinoïdenkalk), die veel als bouwsteen wordt toe-
gepast, behoort hiertoe.

In weer latere perioden, zoals in de Jura en het Krijt, was de zeespiegel veel hoger dan tegenwoordig. Daardoor werden grote delen van het continent over-
spoeld door ondiepe binnenzeeën, waarin zich omvangrijke, veelal zeer pure, klei-
arme kalkstenen hebben gevormd. Deze kunnen onder andere worden teruggevon-
den in Zuid Limburg (de Maastrichter steen of *mergel* van de Sint-Pietersberg) en bij Dover en Cap Blanc Nez (de krijtkliffen). Al deze verschillende typen kalkafzet-
tingen zijn tegenwoordig zichtbaar als geplooide kalksteengebergten.

Onzuivere kalksteen

Wanneer kalksteen niet volledig bestaat uit pure calciumcarbonaat (geen *zuivere kalksteen* is), maar tevens klei of organische componenten bevat, wordt gesproken van *onzuivere kalksteen*.

Natuurlijke variaties in het kleigehalte van kalksteen (en mergel) blijken zeer belangrijke gevolgen te hebben voor het *nibardinggedrag* van de steenkalkmortel, die uit deze kalksteen door branden en blussen is verkregen. Tijdens het branden van kleihoudende kalksteen reageren de kleimineralen met de ongebluste kalk tot nieu-
we, keramische mineralen. Die reageren tijdens de verharding van de mortel met water (hydrateren, zie § 7.2) en leveren een extra bijdrage aan de uiteindelijke

116 NB: de benaming mergel is gesteentekundig gezien onjuist. Maastrichter steen is een vrij zuivere kalksteen, terwijl de gesteentekundige term *mergel* juist op on-
zuivere (kleihoudende) kalksteen betrekking heeft.

85
sterkte. Een hoger kleigehalte van de grondstof resulteert in een toenemend hydraulisch karakter van de mortel. De *geologische omstandigheden* tijdens de vorming van een kalksteen zijn dus bepalend voor het verhardingsproces van de mortel waarvan het bindmiddel uit deze kalksteen is vervaardigd.

Doordat kalksteen onder andere is ontstaan uit zeeorganismen, is het logisch dat kalksteen vaak organisch materiaal bevat, omdat dit niet altijd volledig is vergaan (vergelijk de carbonische kolenkalken). Het achtergebleven (*relictische*) organische materiaal (donker pigment) verbrandt grotendeels tijdens het brandproces. Hierdoor kunnen kalkstenen voor de productie van steenkalk zeer donker van kleur zijn (Doornikse kalksteen is zwart), terwijl de hieruit verkregen steenkalk zeer licht van kleur is (geel, licht beige tot wit).

Kalksteen in Nederland en België

Kalksteen komt in Nederland alleen voor in een groeve in Winterswijk en in Zuid-Limburg. De steen uit de groeve in Winterswijk is een dolomitische kalksteen die niet wordt gebruikt voor steenkalkproductie.

Dolomiet is een magnesiumcalciumcarbonaat en de kalk die men ervan kan branden bevat daarom veel magnesiumoxide. Magnesiumoxide blust onder normale atmosferische omstandigheden veel langzamer dan calciumoxide, waardoor het veel langer nawerkt. Het is daarom van belang dat de magnesiumkalk volledig is geblust, voordat deze wordt verwerkt.\(^{117}\)

De kalksteen uit Zuid-Limburg (de zeer pure kalksteen uit de Krijtperiode) is wel voor de productie van – zeer dure – luchthardende steenkalk gebruikt, maar alleen gedurende een korte periode na de Eerste Wereldoorlog, toen de import van kalk uit België stil lag. Ook deze kalksteen gaf problemen. Niet alleen was de steen zacht bros, waardoor deze gemakkelijk in de kalkoven vergruisde en deze daardoor verstopte. Bovendien konden er, door de aanwezigheid van de vele vuursteenknolletjes en -concreties die tijdens het branden smeltveldverlagend werkten, problemen in de oven ontstaan (verstopping door sintelvorming). Deze lokale Limburgse, tijdelijke steenkalkproductie ging, door de steeds groter wordende vraag naar cement, al snel over in cementproductie en in 1920 werd de Eerste Nederlandse Cement Industrie (ENCI) opgericht.

De kalksteen uit Zuid-Limburg wordt ook wel aangeduid met *Maastrichts krijt*, of *Sibbesteen*. De belangrijkste benamingen echter, te weten *mergel* en *tufkrijt* of *tuf*

\(^{117}\) Er is magnesium houdende kalk (dolomietkalk) op de markt die vakkundig volledig is geblust.
Van grondstof tot mortel

zijn eigenlijk foutief. De Zuid-Limburgse kalksteen is geen mergel (het gehalte aan kleimineralen is zeer laag en beslist geen 25 %) en het is ook geen vulkanisch gesteente, zoals de naam tuf doet vermoeden. Het is een zachte, zeer poreuze, gele rifkalksteen, opgebouwd uit fossielen, fossielfragmenten en kalkmodderbrokjes met weinig, zeer fijnkristallijne matrix. De steen bestaat voor ongeveer 96% uit calciumcarbonaat. Voor het overige bevat de steen 3% limoniet (een ijzer(oxi)hydroxide) en 1% kwarts. De aanwezige fossielen zijn karakteristiek voor een rifcomplex.

In Nederland is dus nooit veel kalk uit inheemse kalksteen vervaardigd – wel uit schelpen (de reden hiervoor zal duidelijk zijn). Steenkalk, of de grondstof kalksteen, werd geïmporteerd uit de omringende landen, omdat daar schier onuitputtelijke hoeveelheden kalksteen voorradig zijn. Vooral steenkalk en kalksteen uit België vonden in Nederland een afzetgebied en het zijn dan ook vooral deze kalkstenen die in Nederland zijn gebruikt voor de vervaardiging van de steenkalk, die in historische objecten is verwerkt. Hiervoor werd meestal de ongebluste kalk over de rivieren aangevoerd. De hydraulische Doornikse kalk kwam aan over de Schelde en Luikse luchtkalk over de Maas.

Vanaf het einde van de achttiende eeuw heeft een verschuiving plaatsgevonden van kleinschalige en lokale productie naar grootschalige en meer geïndustrialiseerde productiewijzen. Daarbij neemt met het verloop van tijd het aantal grooves en wingebieden sterk af. De belangrijkste kalkstenen voor de bereiding van Belgische steenkalk zijn de eerder genoemde Luikse kalksteen en Doornikse kalksteen. Uit oude bestekken blijkt dat vaak hydraulische Doornikse kalk is voorgeschreven. Men komt deze kalk daarin met regelmaat als cendre de Tournai tegen.

De Luikse kalksteen wordt voornamelijk tussen Maastricht en Luik (vooral bij Visé) gewonnen. Deze kalksteen is, net als de Zuid-Limburgse sibbesteen een grondstof voor luchtkalk: een pure kalksteen met weinig bijmengingen. Ook de Luikse steen is een rifkalk, vooral opgebouwd uit fossielen en kalkmodderbrokjes. Ook zijn grofkristallijne calcietdomeinen aanwezig (mogelijk gerekristalliseerde fossielen) en calcietaders. De steen dankt zijn donkere kleur aan de aanwezigheid van diffuus verspreide koolstof en (weinig) opaak erts.118 Ook zijn enkele koolstof-stylolietjes (brandlijnen) aanwezig. Het calciumcarbonaatgehalte is bijna 100%.

De Doornikse kalksteen daarentegen is een grondstof voor hydraulische kalk. Deze steen bevat naast calciet ook klei, ijzeroxide en kwarts. Er werd een onderscheid gemaakt in drie typen, maar voor de Nederlandse steenkalk werd veelal de zogehe-

118 Metaaloxide of -sulfiden, die in microscopische preparaten ondoorzichtig zijn.
ten waterkalk (de meest hydraulische soort) gebruikt. Ook de Doornikse steen is een donkere steen, maar verder verschilt hij in alle opzichten van de Luikse steen. De Doornikse steen heeft een karakteristieke leiachtige verwering – het gevolg van talloze onder geologische omstandigheden door druk aan elkaar parallel georiënteerde glimmers (mica’s) en kleimineralen.

Er is nog steeds een grote productie van steenkalk in België. Slechts een kleine fractie daarvan wordt gebruikt als bouwmateriaal. Het grootste deel wordt verwerkt in de landbouw, de chemische industrie en de metaalindustrie. De lange traditie in de ontginning van kalksteen en de fabricage van kalk in België heeft ertoe geleid dat wereldwijd de grootste kalkbedrijven in Belgische handen zijn.

Kalkgroeven in België in het begin van de twintigste eeuw

Een technische nota in het Bulletin des Métiers et d’Arts van 1909-'10, geeft informatie over de kalkgroeven die in het begin van deze eeuw in België voor de kalkproductie uitgebaat werden en over de soort kalk die ermee kon worden gefabriceerd. Daaruit blijkt nog eens hoe België, door de aanwezigheid van verschillende soorten kalksteen, alle soorten kalk produceerde, van zuivere luchtkalk (vette kalk) tot sterk hydraulische kalk. In tabel 5 zijn de vindplaatsen van de grondstof voor de diverse soorten kalk op basis van die publicatie nog eens op een rij gezet.

In dezelfde publicatie zijn de definities van de verschillende kalksoorten opnieuw geformuleerd en is het verband aangegeven tussen de samenstelling van de kalkstenen en de verkregen kalksoort. Verschillende van deze groeven produceren nu nog steeds kalk.

2.2 Schelpen

Schelpen zijn van oudsher de grondstof voor de productie van schelpkalk. Door de schelpen te branden en daarna te blussen met water ontstaat kalk, ofwel Portlandiet. In mortels worden soms ook hele en gebroken schelpen aangetroffen. Dat geldt vooral voor mortels van zestiende en zeventiende-eeuwse, nabij de kust gelegen monumenten. Primair wijst de aanwezigheid van schelpen en schelpengruis in de mortel op een slecht gebrande schelpkalk. Ze kunnen echter ook afkomstig zijn uit (schelprijk) strandzand, dat als toeslagmateriaal gebruikt kan zijn. Schelpresten in de mortel hoeven dus niet eenduidig te wijzen op schelpkalk als bindmiddel, want schelprijk strandzand kan als verschralingsmiddel zijn toegevoegd aan bijvoorbeeld

Van grondstof tot mortel

hydraulische steenkalk. Ook in recente steenkalkmortel zijn soms schelpresten te vinden, bijvoorbeeld omdat de leverancier schelpengruis heeft toegevoegd, om zo zijn product als een schelpkalk te kunnen verkopen. Die vervalsing is van alle tijden: schelpkalk is van oudsher duurder dan steenkalk en ook Van der Kloes maakt melding van deze praktijk.\(^{120}\)

Tabel 5

<table>
<thead>
<tr>
<th>Luchtkalk</th>
<th>Vette kalk</th>
<th>Zwak hydraulische kalk</th>
<th>Matig hydraulische kalk</th>
<th>Hydraulische kalk</th>
<th>Sterk hydraulische kalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhisne en omgeving</td>
<td>Arquennes</td>
<td>Barvaux (L)</td>
<td>Alterm (L)</td>
<td>Antoing (H)</td>
<td>Chaudfontaine (L)</td>
</tr>
<tr>
<td>Ecausines</td>
<td>Soignies</td>
<td>omgeving Durbuy</td>
<td>Bouvignes (N)</td>
<td>Baelen-lez-Limbourg (L)</td>
<td>Chercq (H)</td>
</tr>
<tr>
<td>Ath (H)</td>
<td>Boussu (H)</td>
<td>Blaton (H)</td>
<td>Couvin (N)</td>
<td>Basècle (H)</td>
<td>Nismes (H)</td>
</tr>
<tr>
<td>Cerfontaine (N)</td>
<td>Ciney (H)</td>
<td>Forries (L)</td>
<td>Fosses (N)</td>
<td>Calonne (H)</td>
<td>Solre-Sambre (N)</td>
</tr>
<tr>
<td>Maffles (H)</td>
<td>La Buissière (H)</td>
<td>La Buissière (H)</td>
<td>Horion (L)</td>
<td>Chokier (L)</td>
<td>Doornik (H)</td>
</tr>
<tr>
<td>Rochefort (N)</td>
<td>Wépion (N)</td>
<td>Huy (L)</td>
<td>Fosse (N)</td>
<td>Fovrières (L)</td>
<td>Baelen-lez-Limbourg (L)</td>
</tr>
<tr>
<td>Wépion (N)</td>
<td>Visé (L)</td>
<td>Lavoir (L)</td>
<td>Frasnes (H)</td>
<td>Horion (L)</td>
<td>Basècle (H)</td>
</tr>
<tr>
<td>(enz....)</td>
<td></td>
<td>Muni (L)</td>
<td>Heppignies (H)</td>
<td>Altert (L)</td>
<td>Calonne (H)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hollogne-aux-Pierres (L)</td>
<td>Bouvignes (N)</td>
<td>Antoing (H)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La Buissière (H)</td>
<td>Bouvignes (N)</td>
<td>Becavez (L)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wépion (N)</td>
<td>Oret (N)</td>
<td>Rossignol (L)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mevergnies (H)</td>
<td>Rhisne (N)</td>
<td>Viesville (H)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oret (N)</td>
<td>Rossignol (L)</td>
<td>Viesville (H)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Viesville (H)</td>
<td>Viesville (H)</td>
<td>Viesville (H)</td>
</tr>
</tbody>
</table>

(H) = Provincie Henegouwen
(L) = Provincie Luik
(N) = Provincie Namen

Schelpen werden voorts ook gebruikt als bed, waarop natuurstenen vloerplaten met een weinig kalkmortel, verdeeld in dotten, werden gesteld. Deze wijze van stellen van natuursteen is nu in onbruik geraakt. Tegenwoordig wordt de natuursteen meestal in een aarddroog speciebed van zand en cement gelegd. Omdat het contact van cementmortel met kalksteen en vooral lichtgekleurde marmers kan leiden tot plaatselijke verkleuringen tengevolge van de migratie van stoffen, waar-

\(^{120}\) Van der Kloes 1893, p. 38.
Kalkboek

onder metaalverbindingen, uit de mortel, is voorzichtigheid en zorgvuldige detaille-
ring hier geboden.

De winning van schelpen

De schelpen (kleine, gladde soort: *Spinula bivuda*) werden tot 1960 met de hand
vergaard op de stranden van de Noordzee, de Waddenzee en de – toenmalige –
Zuiderzee. Vanaf 1880 worden de schelpen (grotere, gestreepte soort: *Kokkel*) te-
vans opgezogen uit schelpenbanken in de Noordzee en Waddenzee. In 1880 ge-
beurt dit voor het eerst met een stoomschelpenzuiger. De winplaatsen van schelpen
hebben zich dus met verloop van tijd verplaatst van het strand naar de zee. Tot
1900 is de Noordzee het belangrijkste wingebied voor de schelpenvangst en daarna
geldt dit voor het Waddengebied, met winplaatsen tussen Ameland en Schiermon-
nikoog en tussen Terschelling en Vlieland. Het wingebied *De Roompot* bij de mon-
ding van de Schelde in de Noordzee blijft echter belangrijk.

De expertise op het gebied van het baggeren in Nederland heeft ertoe geleid
dat Nederland marktleider is voor de schelpenwinning. Op drie concessielocaties
(Roompot, Waddenzee en Noordzee) worden door vijf bedrijven schelpen uit
schelpenbanken opgezogen. Door het inzetten van een nieuw soort zuiger, de sleep-
hopper, is het mogelijk om ook bij grotere deining schelpen op te zuigen, waardoor
de winning ook verder uit de kust kan plaatsvinden. De concessiegebieden worden
door Rijkswaterstaat uitgegeven om te voorkomen dat uitputting ontstaat.

De banken waaruit de schelpen worden gezogen bestaan uit schelpen met
slechts weinig organische restanten van de weke delen van deze tweekleppigen. De
ouderdom van de schelpen varieert van enkele jaren tot vele millennia; de meeste zijn
tussen driehonderd en vijftienhonderd jaar oud. Door het verleggen van getijdegeulen
worden recente en oude schelpenbanken bloot gelegd. De aanwas van de schelpen is
groot: jaarlijks sterft 70% tot 90% van de kokkelpopulatie af. De schelpen worden
door de stroming in (getijde)geulen afgezet in *schelpenbanken*. Er wordt aangenomen
dat de winning deze natuurlijke aanwas niet overschrijdt, wat betekent dat de schel-
penvoorraad onuitputtelijk is. Deze regeneratie van de grondstof heeft een belangrijk
positief effect op de milieuhygienische beoordeling van het gebruik van schelpkalk in
de bouw (zie hoofdstuk 1, § 3: *Duurzaam bouwen met kalkmortel*).

Voor de winning van schelpen moet een *milieueffectrapportage* (MER) worden op-
gesteld, waarin de effecten voor het milieu en de ecologie worden afgewogen.

2.3 Natuurlijke puzzolanen

Natuurlijke puzzolanen zijn gemalen steenpoeders of aardachtige materialen, die de
eigenschap bezitten met kalk (calciumhydroxide, *portlandiet*) te reageren onder vor-
Van grondstof tot mortel

ming van verhardende reactieproducten. Aan matige, of niet hydraulische kalk-mortels toegevoegd, leveren zij een extra bijdrage aan de verharding van kalkmortels en daarmee aan hun eindsterkte. De puzzolanen zijn genoemd naar het dorpje Pozzuoli nabij Napels, waar de Romeinen de puzzolane werking van het aldaar gewonnen bodemmateriaal van vulkanische oorsprong ontdekt. Alle natuurlijke puzzolanen zijn van vulkanische oorsprong, zowel de tras uit de Eifel als bijvoorbeeld de aarde van Santorini.

Tras: een natuurlijk puzzolaan

In Vlaanderen, Nederland en Duitsland gebruikte men als natuurlijke puzzolaan vooral tras. Erg gewaardeerd was de Dordtse tras, vervaardigd uit tufsteen uit de streek van Andernach in Duitsland. De Andernachse tufsteen werd per schip over de Rijn naar Nederland vervoerd. In het aan de Merwede gelegen Dordrecht werd daaruit tras geproduceerd en daarna verhandeld.

Zelfs de tras die in Vlaanderen werd verwerkt werd via Nederland verhandeld, ondanks het feit dat deze in de Rijnvallei in Duitsland werd ontgonnen. Tras wordt verkregen door het malen van tufsteen, die in het Brohlerdal en het Nettedal voorkomt (Duitse Vulkaan Eifel) en ook als bouwsteen werd en wordt toegepast. Deze tufsteen is ontstaan door verharding van zogenoemde ignimbritische tufafzettingen, die in het Tertiair en Kwartair door de Eifelvulkanen werden uitgestoten. Ignimbrieten zijn zeer hete wolken vulkanische as, waterdamp en vulkanische gassen, die uit de vulkaanmond worden gedreven ten gevolge van de hoge gasdruk. De wolken raasden de vulkaanhelling af en volgden daarbij vaak de beekdalen. Het fijn verdeelde tuf zakt hierbij uit de ignimbriet en werd in bijna niet gelaagde banken afgezet. De samenstelling van het tuf in het Brohlerdal en Nettedal is trachitisch. Dat wil zeggen dat de lava – die door de enorme gasuitbarsting niet rustig kon uitstromen, maar geheel gefragmenteerd werd – bestond uit kristallen van veldspaat (sanidien), die omgeven werden door een niet kristallijne grondmassa (in tegenstelling tot peperino, een rustig afgekoelde trachiet). Ten gevolge van de snelle afkoeling na uitbarsting van de ignimbriet verstarde deze grondmassa tot een glasachtige materie. Juist aan deze niet kristallijne, glasachtige component van de tufsteen, heeft de tras zijn reactiviteit te danken. Tras bestaat verder uit vermalen sanidienkristallen, die echter geen bijdrage

121 National s.a.
leveren aan de puzzolane reactie van de tras. Dit geldt overigens voor alle vermalen kristallijne stollingsgesteenten.

De ontwikkeling van de maal- en zeefttechnieken hebben ertoe geleid dat met het verloop van de tijd de tras *steeds fijner* gemalen kon worden en bovendien steeds beter kon worden uitgezeefd. Zeventiende-eeuwse tras bevat daardoor nog grovere korreltjes, in tegenstelling tot de twintigste-eeuwse tras.

Tras kan separaat als los poeder aan een kalkmortel worden toegevoegd, maar de tras en kalk kunnen ook samen zijn gemalen. Daardoor zou een betere menging van beide componenten tot stand komen, die tot betere uitharding zou leiden. Te- genwoordig wordt traskalk op deze wijze vervaardigd. Of beide componenten een positieve werking op elkaar uitoefenen tijdens malen is niet zeker, maar de werking van tras neemt in ieder geval toe naarmate dit puzzolaan fijner is gemalen. Samen malen zou mogelijkerwijs kunnen resulteren in een fijnere korrelgrootte van de tras.

Omdat tras en kalk met elkaar reageren, zijn kant en klare trasbevattende mortelmengsels onder vochtige omstandigheden maar beperkt houdbaar. De opslag van dergelijke bouwmaterialen verdient daarom extra zorg en aandacht.

De werking van de aarde van Santorini, de aarde van Pozzuoli en vulkanische bodemsoorten in Indonesië is geheel vergelijkbaar met de werking van tras. Ook bij deze puzzolanan is de glasachtige component het met kalk reactieve deel.

De reactie van puzzolanan met kalk verloopt langzamer dan de hydratatiereac- tie van hydraulische componenten in hydraulische kalk en cement. Daarom wordt tras ook wel – vaak ten onrechte – vervangen door cement.

2.4 Synthetische puzzolanan

Synthetische puzzolanan zijn gemalen producten die niet in de natuur zijn gevormd, maar die dezelfde puzzolane eigenschappen hebben als de natuurlijke puzzolanan, zoals die bekend zijn van tras (zie § 2.3). Dit betekent dat synthetische puzzolanan met kalk reageren onder vorming van verhardende reactieproducten, die een bijdra- ge leveren aan de sterkte van de kalkmortel. De grondstoffen voor de synthetische puzzolanan bestaan uit gebakken materialen, zoals baksteen en kolenas. De mate waarin gebakken klei geschikt is als puzzolane toeslagstof is afhankelijk van de temperatuur waarbij de klei werd gebakken. Ongebakken of te zacht gebakken klei heeft geen puzzolane werking. Dat geldt ook voor te hard gebakken klei, die geheel is gesinterd en een kristallijne vorm heeft aangenomen. Het gaat bij puzzolanan om amorf silica. In de amorf (glasachtige) fase is silica uiterst reactief, een eigenschap die het grotendeels verliest als het (bij hoge temperatuur) in een kristallijne vorm overgaat. Amorf silica blijft over wanneer de kleiminenalnen bij het bakken hun chemisch gebonden water hebben verloren en bovendien een zekere tijd bij de in dit
Van grondstof tot mortel

verband optimale baktemperatuur zijn gebleven. Het gehalte aan amorf silica is bij illitische klei optimaal bij het branden op circa 600 °C. Bij kaolinitische klei is dat omstreeks 900 °C. In Nederland wordt bij de baksteenfabricage voornamelijk illitische klei gebruikt.

Vanaf de achttiende eeuw wordt een aantal verschillende benamingen gebruikt voor synthetische puzzolanen gebaseerd op gebakken klei. Het meeste bekend in Nederland is waarschijnlijk het Amsterdams of Cazius cement. Dit is een roodachtige poeder met hydraulische eigenschappen, dat wordt verkregen door uit het IJ gebaggerde klei te bakken en na afkoelen fijn te malen (zie ook hoofdstuk 2 § 2.8). Een andere hiervoor gebruikte naam is rood cement. Een meer algemene naam voor een puzzolaan die is verkregen door gebrande klei fijn te malen – veelal redelijk harde doorbakken metselstenen122 – is brikkenmeel.

Niet geheel verbrande steenkool, steenkuolsintel, werd ook gebruikt als hydraulische component in kalkmortels. Soms verving het zowel het zand als het natuurlijke puzzolaan.123 Volgens Van der Kloes is de toepassing ervan niet aan te bevelen. Het kan onder meer tot zoutschade leiden. Zogenaamde Doornikse asch bestaat uit as van de steenkolen uit Doornikse kalkovens vermengd met fijngestampte gebrande kalksteen.

Het fijngemalen poeder van niet-blusbare grovere delen die na het branden en blussen in steenkalk aanwezig (kunnen) zijn, gedraagt zich ook als een puzzolaan stof. Het leidt tot een zogenaamde Cementkalk (petits ciments) of ciments romains. Alle synthetische puzzolanen bevatten, zoals ook het geval is bij alle natuurlijke puzzolanen, een niet kristallijn, glasachtige component. Deze component reageert met de kalk. De glasachtige component is het gevolg van snelle afkoeling na gehele, of gedeeltelijke smelt, geheel vergelijkbaar met het ontstaan van de glasachtige component in natuurlijke puzzolanen, die van vulkanische oorsprong zijn.

Synthetische puzzolanen worden verkregen door het vermalen van keramische producten, zoals bakstenen (brikkenmeel) en dakpannen, kolensintels, en as uit kalkovens, dus uit producten die aan grote hitte hebben blootgestaan en redelijk snel zijn afgekoeld zodat een onstabiel materiaal wordt gevormd, dat niet of nauwelijks kristallijn is. Dit materiaal verleent de synthetische puzzolanen hun puzzolane werking.

Tegenwoordig wordt ook vliegas als puzzolaan verwerkt, voornamelijk in cement. Ook vliegas is een substantie die bestaat uit zeer fijne bolletjes van amorf, glas-
achtig materiaal. Ook het amorfe silicaproduct *silicafume* is een sterk puzzolaan materi-
aal. Door zijn zwarte kleur verkleurt het kalkmortels tot sterk grijs gekleurde mortels,
hetgeen in de restauratiepraktijk veelal gezien wordt als een visueel gebrek.

2.5 Zand

Zand is het voornaamste toeslagmateriaal voor mortels. Ook andere toeslagen zijn
bekend, zoals haar, kolengruis, gebroken schelpen en hoogovenslak, maar natuurlijk
gevormd kwartszand werd en wordt in de Nederlanden het meest toegepast.

Het ontstaan van zand

Zand is een niet samenhangend (ongeconsolideerd) materiaal en bestaat uit *losse korreltjes* van mineralen en gesteenten met afmetingen tussen 64 µm en twee millim-
eter, althans volgens een classificatie in de geologie. Als bouwmateriaal komen
korrelgroottes tot wel vier millimeter voor in het *zand*. Volgens de geologische clas-
sificatie van zand en grind behoort het materiaal tussen twee en vier millimeter tot
zeer fijn grind.

De zandkorreltjes zijn door stromend water, wind of ijs getransporteerd en
zijn op bepaalde locaties afgezet, op het moment dat het transportmedium te wei-
 nig energie had om de korreltjes nog verder te vervoeren. Vanwege deze wijze van
ontstaan, wordt zand gerekend tot de ongeconsolideerde *sedimenten*, of afzettingen.

Wanneer zand onder geologische omstandigheden verhardt, ontstaat *zandsteen*.
Zandsteen is hierdoor een samenhangend, ofwel *geconsolideerd* gesteente.

De mineraal- en gesteentekorreltjes zijn ontstaan uit vaste gesteenten in berg-
gebieden, die door *verwering* en de inslijpende werking van stromend water, wind of ijs *(erosie)* gestaag afbrokkelden. De brokstukjes werden vervolgens door stromend
water of ijs vervoerd en hierdoor verkleind. Uiteindelijk begonnen de kleinere brok-
stukjes en stukken puin aan een lange reis door rivieren, die het steeds fijner worden-
de materiaal in de vorm van losse korreltjes naar zee transporteerden.

Stormend water en wind bezitten het vermogen het zand te sorteren, afhanke-
lijk van de stroom-, of windsnelheid. Bij lage snelheden kunnen slechts de kleinste
zanddeeltjes worden getransporteerd en bij hogere snelheden tevens grotere zand-
deeltjes. Wind kan nog beter sorteren dan stromend water. Hierdoor is bijvoorbeeld
het door de wind afgezette duinzand goed gesorteerd. Dat wil zeggen dat alle zand-
korreltjes ongeveer even groot zijn; er is Weinig variatie in korrelgrootte. Stromend
water heeft een minder sterke sorterende werking, maar desondanks zijn de variaties
in korrelgrootte van rivierzand niet heel groot; rivierzand is dan ook in het algemeen
good tot matig gesorteerd.
De verschillende soorten zand

Niet alle zandkorreltjes bereiken de zee en langs in de rivieren worden grote hoeveelheden van het zand afgezet als rivierzand, vooral in de benedenloop van de rivieren, waar de transportsnelheid van het water het geringst is (fluviaal zand; afgezet door stromend water).

De rivierafzettingen bevatten naast het mineraal kwarts ook andere (voor transport resistent) mineralen en gesteentefragmenten, die afkomstig zijn uit de stroomopwaarts aanwezige typen gesteenten, die in het brongebied van de rivier worden uitgesleten. Het zand van de Rijn bijvoorbeeld bevat mineralen die ontstaan zijn in de vulkanische gesteenten van de Eifel en hieruit door erosie zijn vrijgemaakt. Voor vulkanische gesteenten kenmerkende mineralen, zoals olivijn, sanidiën en augiet, zijn wel in Rijn- en IJsselzanden aanwezig, maar ontbreken in Maaszanden. Ook fragmenten van typische vulkanische gesteenten uit de Eifel zijn niet in Maaszanden aanwezig; zij zijn typisch voor Rijnzanden. De Maaszanden bevatten daarentegen gesteentefragmenten, die kenmerkend zijn voor de Vogezen en Ardennen: graniet, lydiet, diabaas, kalksteen en schalie.

In zee wordt het zandige sediment uit de rivieren verder vervoerd door getijdenstromen, waaruit het nabij de kust naar de bodem van de zee zinkt (zeezand of marien zand). Het zand wordt ook door golven op het strand gedepondeerd (zandstrand), waar de wind vat krijgt op de losse en drogende korreltjes.

Vanaf het strand begint een derde, doorgaans vrij korte, reis met wind als transportmedium: duinvorming. Afhankelijk van windsnelheden worden zandkorreltjes opgetild en door de wind vervoerd, waarbij veelal een springende beweging ontstaat, in de geologie salteren genoemd. De wind, met zijn sterk variabele snelheden, bepaald door lokale hindernissen (bijvoorbeeld helmgras), kan het zand slechts over korte afstanden verplaatsen. Het zand wordt zodoende in de duinen afgezet als duinzand. Alleen heel fijnkorrelig zand kan over langere afstanden door de wind worden verplaatst. Voorbeelden hiervan worden in Limburg gevonden, waar de löss door de wind is afgezet (eolisch zand). Niet alleen langs de kust ontstaan zandduinen, ook in het binnenland kan zand door de wind worden verstoven, wanneer de zandkorreltjes niet door vegetatie tegen de wind worden beschermd. Er ontstaan duinovormige stuifzandafzettingen, zoals de stuifzanden van de Veluwe en de rivierduinen die we uit de archeologie kennen als de plaatsen die in de Steentijd voor bewoning werden benut.

Kalkboek

Stuwend ijs in de vorm van zich verplaatsend landijs bezit niet de mogelijkheid tot het sorteren van zand. Als een ploeg wordt de bodem omgewoeld en worden zand en stenen door het landijs gemengd. Dergelijke afzettingen worden in Nederland aangetroffen op de Utrechtse heuvelrug, die ten gevolge van deze ploegende werking van het landijs is ontstaan. In de zandafzettingen op de Utrechtse heuvelrug komt hierdoor zeer slecht gesorteerd zand voor. In zandgroeves, bijvoorbeeld in Maarssen, is dit goed te zien: grote keien en kiezels drijven in zandmassa’s. Dergelijke zandafzettingen worden *glaciale zanden* genoemd. Zij zijn slecht gesorteerd (er is sprake van grote verschillen in korrelgrootte). Glaciale zandafzettingen komen vaak samen voor (zijn vaak geassocieerd) met fluviatiele zandafzettingen (zanden, afgezet door stromend water). Wanneer het landijs smelt, wordt zand vervoerd door het wegstromende smeltwater. Zeer dicht bij zandafzettingen met slecht gesorteerd zand (door stuwend ijs) kunnen dus zandafzettingen aanwezig zijn met goed gesorteerd zand (door stromend smeltwater). Glaciale zanden werden in Nederland ook wel *bergzand* genoemd, maar deze term kan beter worden gebruikt voor het zand dat met name in Duitsland wordt verkregen door het fijnmalen van donker gekleurde soorten gesteenten.

De zandkorrels nader beschouwd

Het hoofdmineraal van zand is in Nederland en in België *kwarts*. Dit mineraal bezit geen kristallografische splijtrichtingen, waarlangs de korrels door mechanische belasting tijdens het transport kunnen breken. Bovendien is kwarts chemisch bijna niet reactief, in tegenstelling tot andere mineralen zoals veldspaat. Verkleining van de kwartskorrels tijdens het transport vindt alleen plaats ten gevolge van het afsluiten van de korrels, of doordat grotere kwartskorrels tijdens het transport in stukken breken. Door het afsluiten bezitten zandkorrels uit rivierafzettingen een glad, gepoijst oppervlak, ofwel: fluviatiel zand heeft een *goede afronding*. Doordat de zandkorrels van eolisch duinzand daarentegen tijdens het transport tegen elkaar aan stuiten (*salteren*), ontstaan kleine beschadigingen in hun oppervlak. Duinzand heeft hierdoor een slechte (tot matige) afronding. De mate van afronding van de zandkorrels verschilt dus informatie over het transportmechanisme. Het behoeft geen nadere uitleg dat zandafzettingen die door landijs zijn opgestuwd *slecht afgerond* zand bevatten. Er is immers nauwelijks sprake geweest van transport, dus evenmin van afrijden van de oppervlakten.

Broothaers 2002.
Van grondstof tot mortel

Niet alleen de gladheid van het oppervlak van de zandkorreltjes wordt beïnvloed door het transport, maar ook de *vorm* van de korreltjes. Zo neigen kwartskorreltjes na langdurig transport door water steeds bolvormiger te worden. De mate van het benaderen van de bolvorm wordt aangeduid met de term *sfericiteit*. Korrels met een hoge sfericiteit zijn (bijna) bolvormig en met een lage sfericiteit zijn (bijna) plat. Schaliefragmentjes (fragmentjes van leisteen), opgebouwd uit laagjes van mica's, hebben juist de neiging plat te blijven tijdens transport door water en hebben derhalve een lage sfericiteit.

Door de geografische ligging van Nederland bevinden alle rivieren zich in hun benedenloop. Dit heeft tot gevolg dat grote hoeveelheden zand door de rivieren worden aangevoerd en afgezet. Bovendien bestaat bijna de gehele kuststrook uit duin­zand. Gedurende meerdere ijstijden is zand verplaatst en afgezet door enorme massa's landijs, waarvoor tevens de rivieren moesten wijken, of in hun loop moesten verleggen. Alle typen van zandafzettingen zijn dus in Nederland aanwezig en eigenlijk kan dit land als een – door de inwerking van het landijs verstoorde – met zand opge­vulde rivierdelta worden beschouwd. De korrelgrootteverdeling, de mate van afronding en sfericiteit en de mineralogische samenstelling van de zandafzettingen in die rivierdelta worden bepaald door hun transport- en afzettingsomstandigheden, ofwel hun geologische geschiedenis.

Korrelgrootteverdeling van natuurlijk zand

Omdat zandkorrels door een transportmedium (stromend water, wind, ijs) worden voortbewogen is de energie van dat medium bepalend voor de effectiviteit van het transport. Met *energie* wordt hier bedoeld het vermogen om zandkorrels te transporteren. Wanneer de energie te laag is voor transport, worden de zandkorrels gedeponeerd. Energieverschillen zijn bijvoorbeeld aanwezig in een bocht van een rivier. In de binnenbocht stroomt het water langzamer, waardoor het een lagere energie heeft, in de buitenbocht sneller, waardoor het water daar een hogere energie heeft. Het gevolg is dat in de binnenbocht zand en zelfs klei wordt afgezet met een veel kleinere korrelgrootte dan het zand dat in de buitenbocht wordt afgezet, dat zelfs grind kan bevatten.

Omdat wind over het algemeen niet in kromme patronen waait, maar in een min of meer constante windrichting, is de energie van de wind over grotere afstanden gelijk. Omdat wind dus over grotere afstanden een beter sorterend vermogen heeft dan stromend water, heeft eolisch zand een evenwichtigere korrelgrootteverdeling dan fluviatiel zand (zand uit een waterstroom). Dat neemt niet weg dat een storm grotere zandkorrels kan transporteren dan een briesje, maar toch is de gelijk­korreligheid van eolisch zand een eigenschap daarvan.
Met betrekking tot zeezand moet worden opgemerkt dat de zandbanken waaruit dergelijk zand wordt opgezogen zich voor de monding bevinden van rivieren die grote hoeveelheden sediment naar de zee voeren. Het zeezand bevat hierdoor een veelheid aan korrelgroottes, omdat het zand door de rivier in kwestie niet in een enkele korrelgroottefractie kon worden uitgesorteerd. Daardoor heeft de korrelgrootteverdeling van zeezand grote overeenkomsten met die van het rivierzand waaruit de zandbanken in de zee zijn ontstaan. Natuurlijk moet hierbij in ogenschouw worden genomen dat het rivierzand dat op de zeebodem wordt afgezet zich in een soort waaiervormige delta heeft verzameld, met bijbehorende flauwe hellingen richting zee. Het afgezette materiaal op deze hellingen kan de kritische hellinghoek bereiken en hierdoor verder landafwaarts glijden, met nieuwe reorganisaties van de korrelgrootteopbouw tot gevolg. Daarom wordt zeezand altijd over een aantal trilzeven gescheiden in een zandfractie en in een grindfractie.

Al met al leidt dit er dus toe, dat afhankelijk van het soort zand, er min of meer sprake is van een karakteristieke verdeling van de korrelgrootten. De korrelgrootteverdeling kan ook weer afhankelijk van het soort zand slechts weinig of soms juist tamelijk veel afwijken van die karakteristieke verdeling (denk aan de verschillen tussen rivierzand uit de binnenbocht en rivierzand uit de buitenbocht). Met die kanttekening geven we hier, in figuur 8, voorbeelden van korrelgrootteverdelingen (zeefkrommes) van zanden die vaak op Nederlandse bouwplaatsen aangetroffen worden.

De kleur van zand

Nadat zand op een bepaalde locatie is afgezet, kunnen de zandkorreltjes worden gecoat door ijzermineralen, waaronder het mineraal limoniet. Limoniet is een ijzer-oxide-hydroxide met wisselende hoeveelheden kristalwater, ook wel gele oker genoemd. Het slaat onder bepaalde omstandigheden neer uit ijzerrijke waterige oplossingen, bijvoorbeeld uit ijzerrijke kwelwater dat door een zandafzetting percolleert. Hierdoor verandert de kleur van het zand van kleurloos wit (puur kwartszand)
tot okerkleurig en met alle kleurnuances daartussenin. Omdat deze kleurnuances het meest voorkomen in zanden worden zij ook wel zandkleurig genoemd.

Onder bepaalde omstandigheden kan in meren en ondiepe zeeën het groene mineraal glauconiet ontstaan in de vorm van kleine bolletjes, die ongeveer even groot

Figuur 8

Korrelgrootteverdeling van diverse natuurlijke zanden.
Kalkboek

zijn als de kwartskorreltjes. Door de aanwezigheid van dit mineraal wordt zand groen gekleurd. Dergelijk zand wordt *glauconietzand* genoemd.

Door de sorterende werking van golven en stromend rivier water kunnen zich plaatselijk een aantal *zwart* gekleurde mineralen concentreren, omdat de korreltjes van deze mineralen veel zwaarder zijn dan de kwartskorreltjes. Het zand dat zo ontstaat wordt zand van *zware mineralen*, ofwel *placerzand* genoemd. We komen kleine concentraties van zwart zand bijvoorbeeld tegen op het strand.

Geologische omstandigheden, zowel in het achterland van de rivieren, als op de sedimentatielocatie, zijn dus tevens bepalend voor de kleur van het zand. De kleur van het zand kan ook gebruikt worden om mortel te kleuren.

Klei en grind

Ook kleinere deeltjes dan 64 µm worden door rivieren en door de wind verplaatst en afgezet, waardoor met name in de langzaam stromende binnenbochten van rivieren *klei* wordt afgezet. Maar ook grotere fragmenten worden door rivieren en werden door voormalige smeltwaterstromen getransporteerd en elders gedeponeerd, waardoor *grindafzettingen* ontstonden. Klei, zand en grind, de bouwstenen van de Nederlandse ondergrond en tevens de belangrijke bouwmaterialen, of grondstoffen daarvoor, zijn hier in grote hoeveelheden voorhanden.

Zandwinning voor de bouw

Historische bouwwerken werden gebouwd met *lokale* bouwmaterialen. Zo wordt in de kalkmortels van monumenten in de buurt van de zee kust vaak duinzand als toeslagzand aangetroffen en is het glauconietzand uit de nabijheid van Leuven (het *zand van Diest*) toegepast in verscheidene historische gebouwen in Brabant, zoals bijvoorbeeld in de zeventiende-eeuwse mortels van de Michielskerk te Leuven.\(^{126}\)

Tegenwoordig wordt zand op bepaalde concessies gewonnen, waardoor het *lokale* karakter van het zand verloren is gegaan. Dit behoeft geen nadeel te zijn, integendeel. Er worden specifieke eisen gesteld aan het toeslagzand van mortels, op grond van de vereisten met betrekking tot de verwerkbaarheid en het toepassingsgebied. Door het enorme aanbod aan diverse typen zand is het mogelijk de juiste keuze te maken voor specifieke toepassingen, zoals voor compatibele restauratieromeostels. Zo kan men kiezen voor een zeer goed gesorteerd duinzand, of juist voor een slecht gesorteerd zand uit afzettingen die door landijs zijn opgestuwd.

\(^{126}\) Callebaut 1999.
Van grondstof tot mortel

Zand wordt bovendien verkregen door het *vermalen* van gesteenten of grind. De afronding van de zandkorrels die men hiermee verkrijgt is zeer slecht, maar de sorteering van het zand kan goed zijn door het uitzeven van bepaalde zandfracties. Het bergzand uit Duitsland is zeer donker, bijna zwart van kleur. In Nederlandse monumenten wordt dit bergzand niet aangetroffen. Voor het toeslagmateriaal van mortels kon men immers beschikken over een overvloed aan materiaal uit de eigen omgeving. Nabij de kust worden in monumenten naast duinzand ook gebroken schelpen als verschralingmiddel in de mortel aangetroffen. Duinzand bevat van nature gebroken schelpen; mogelijk werden ze ook bewust aan de mortel toegevoegd. Duinzand is goed gesorteerd en kent dus nauwelijks variatie in korrelgrootte. Ook is duinzand fijnkorrelig. Door het toevoegen van gebroken schelpen kan de korrelopbouw van de toeslag worden verbeterd (meer variatie in korrelgrootte en toevoeging van een grovere fractie).

3 De productie van het bindmiddel kalk

3.1 Productie van steenkalk vroeger en nu

De historische productie van steenkalk

In de Middeleeuwen kwamen twee typen kalkovens voor: de intermitterende oven en de continuoven. Bij de eerste werden de kalkstenen in de oven gestapeld waarbij de onderste laag een gewelf vormde in de oven. Hieronder ontstond dan een holte waarin brandstof werd gestookt. Het duurde afhankelijk van de grootte van de oven en de aard van de brandstof drie tot vier dagen om de kalksteen te branden en om de vulling weer genoeg te laten afkoelen om de oven leeg te maken. Daarna kon de oven weer worden gevuld. Deze werkwijze kwam in grote lijnen overeen met de werkwijze die al door Cato de Oude (234-149 voor Christus) werd beschreven.

In de continu werkende oven werden afwisselend lagen kalksteen en brandstof gestapeld. Onderaan werd een vuur gestookt waardoor de onderste laag kalksteen calcineerde en door een rooster viel. Hierdoor kon boven regelmatig kalksteen en brandstof bijgeladen worden en zo kon het proces doorgaan. De met deze oven gebrande kalk was minder zuiver en bevatte vaak restanten houtskool die nu nog aangetroffen kunnen worden in oude mortel.127

127 Davey 1961 I.
Kalkboek

Vóór de zestiende eeuw kwamen kalkovens slechts bij uitzondering op een afbeelding voor. Vanaf de zestiende eeuw werd de kalkoven frequenter getekend of geschilderd. Eén van de oudste afbeeldingen van een kalkoven vindt men in een Siciliaanse mozaïek uit de twaalfde eeuw in de Capella Palatina in Palermo.\(^{128}\)

Opvallend in veel afbeeldingen is de positie van de kalkovens naast water. Dit is verklarbaar. Immers, de kalksteen en de kalk werden per schip vervoerd. In de kalkovens gelegen aan de Schelde bij Antwerpen, zoals deze zijn te zien op een prent uit 1515,\(^{129}\) werd vermoedelijk kalksteen gebrand uit het Scheldebekken bij Doornik.

Kalkovens bouwde men bij (grote) bouwwerken maar ook vaste kalkovens kwamen voor. Deze werden bij voorkeur gesitueerd op plaatsen waar de geschikte kalksteen ontgonnen kon worden of waar brandstof beschikbaar was. Deze brandstof was tot het einde van de dertiende eeuw voornamelijk hout.

Voor het branden van de kalksteen was een grote hoeveelheid hout, kolen of turf nodig. Burnell\(^ {130}\) geeft aan, hoeveel brandstof nodig is voor het branden van vijfendertig kubieke voet kalk (ongeveer een ton) in een intermitterende oven: 60 kubieke voet (ongeveer 6,5 m\(^3\)) eikenhout of 117 kubieke voet (ongeveer 13 m\(^3\)) dennenhout of 9 kubieke voet (ongeveer 1 m\(^3\)) turf. In een continuoven was minder brandstof nodig vanwege het groter energetisch rendement (omdat de oven niet telkens moest worden afgekoeld). Zo kon de hoeveelheid kolen verminderd worden met meer dan één vijfde.\(^ {131}\)

Om één ton gebrande kalk te produceren was de hoeveelheid hout nodig van een eik met een diameter van zesenvierentwintig centimeter en een lengte van negen meter of twee dennen van hetzelfde formaat. Het is dan ook niet verwonderlijk dat het vinden van een dergelijke hoeveelheid hout tot problemen leidde, zodat steeds vaker andere brandstoffen, zoals kolen, werden gebruikt. Hierdoor ontstond het probleem van de luchtverontreiniging, waardoor nieuwe reglementen noodzakelijk werden geacht. In het begin van de veertiende eeuw werd het branden van kalk met kolen als brandstof verboden in Londen. Om dezelfde reden vaardigde de magistraat van Brussel in 1415 – 1416 maatregelen uit en in 1536 is het verboden te Am-

128 Tyghem 1966.
129 Detail uit Zicht op de rede van Antwerpen, 1515; Prentenkabinet Antwerpen; Dit is de kalkoven in Vlaanderen; Tyghem 1966, figuur 197.
130 Davey 1961 I.
131 Davey 1961 I.
Figuur 9
Kalkoven (Four Brebart, Calonne bij Tournai), gebouwd rond 1914 (Foto september 1999 © Koen van Balen).
De huidige productie van steenkalk

Tegenwoordig is de situatie met betrekking tot luchthardende kalk geheel anders. Kalksteen wordt niet meer op de eerste plaats gebrand en geblust ten behoeve van de bereiding van mortels. Het kalkhydraat wordt hoofdzakelijk toegepast in de industrie, zoals de papier- en staalindustrie en in de chemische industrie. Industriële rookgassen worden op grote schaal gereinigd met gebruikmaking van kalkhydraat. Ook wordt kalkhydraat ingezet in de strijd tegen de verzuring van de bodem en het oppervlaktewater ten gevolge van zure en verzurende neerslag, door deze base toe te voegen aan het verzuurde milieu. Slechts een kwart van de gebrande kalk wordt gebruikt in de bouw, maar zeker niet alleen voor de bereiding van kalkmortels; het dient ook als één van de grondstoffen voor de productie van kalkzandsteen bouw-elementen, voor de productie van cement en voor het stabiliseren van leem en klei-houdende gronden.

De huidige toepassing van kalkhydraat (lees: steenkalk) is tweeledig: enerzijds wordt het aan geprefabriceerde zandcementmortels toegevoegd ter verhoging van de verwerkbaarheid van de specie en de elasticiteit van de mortel en anderzijds dient het als het bindmiddel voor werkelijke kalkmortels. Deze tweedeling in productlijnen is het gevolg van een grove tweedeling die in de bouwsector is aan te brengen: de nieuwbouw en de restauratie, waarbij de nieuwbouw een dominante rol speelt. Omdat juist in de nieuwbouw cementgebonden en bastaardmortels worden verwerkt, is het niet verwonderlijk dat de huidige productie van steenkalk als bindmiddel voor zuivere kalkmortels slechts een klein aandeel vormt van de totale mortelproductie. Desalniettemin wordt steenkalk steeds meer als bijzonder hoogwaardig (bij)product geproduceerd door de kalkindustrie en door de opleving van dit product, mede ten gevolge van verder geëvolueerde inzichten in de restauratiesector, stijgt de productie van steenkalk langzaamaan. Hierbij moet worden opgemerkt dat de grootschalige economische situatie, de conjunctuur, bepalend is voor de vraag naar (kalk)mortels in de bouwsector en dus ook voor de productie daarvan.

Zoals hierboven reeds is vermeld, worden ongebluste kalk en kalkhydraat voor diverse takken van de industrie geproduceerd. Het aandeel voor een bepaalde tak van industrie wisselt sterk van land tot land. In Scandinavië bijvoorbeeld wordt kalkhydraat grotendeels gebruikt in de papierindustrie en om verzuring van het milieu tegen te gaan. In Duitsland wordt het hoofdzakelijk gebruikt in de staalindustrie. De

Van de Walle 1959, p.65.
productie van steenkalk wordt gedomineerd door Belgische bedrijven, die veelal ook belangen hebben in de buitenlandse kalkindustrie. Dit is een gevolg van de historische ontwikkeling en de grote rijkdom aan kalksteen in België, waardoor zich hier een sterke bedrijfstak kon ontwikkelen.

De huidige situatie wijkt dus sterk af van de historische: toen produceerden kalkovens de kalk vooral als grondstof voor de (hydraulische) steenkalk en nu is deze productie relatief onbelangrijk. Bovendien werd steenkalk toen veel meer lokaal en op kleine schaal gefabriceerd en nu ten gevolge van de schaalvergroting veel minder lokaal en door de moderne grootschalige kalkindustrie.

Ten aanzien van hydraulische kalk is de situatie anders. De productie van hydraulische kalk is nog wel uitsluitend bestemd voor de productie van mortels en zelfs bijna uitsluitend voor de renovatie- en restauratiesector. Producenten van hydraulische kalk worden in diverse Europese landen, zoals Italië, Frankrijk en Engeland gevonden.

3.2 Productie van schelpkalk vroeger en nu

De historische productie van schelpkalk

Het branden van (zee)schelpen tot kalk is een zeer oude traditie. In China werden tijdens de Hsia-dynastie (2205 tot 1766 voor het begin van onze jaartelling) al schelpen gebrand.\(^{133}\) In Europa waren de Grieken in 400 voor Christus al bedreven in het branden van schelpen tot kalk. De Romeinen zouden deze traditie van de Grieken hebben overgenomen, waardoor ook in Nederland al rond 75 na Christus zeker vier schelpkalkovens in bedrijf zijn geweest. Met het vertrek van de Romeinen verdween ook de traditie van het schelpen branden. Pas in 700 na Christus wordt deze traditie in ere hersteld, onder andere ten behoeve van de bouw van de abdij in Egmond. Tijdens de *Middeleeuwen* werd schelpkalk soms zelfs gefabriceerd voor en meegenomen tijdens veldtochten, ten behoeve van de bouw van vestingwerken, bijvoorbeeld door de Hollandse graaf Willem IV (rond 1345).\(^{134}\)

Tot aan de *Eerste Wereldoorlog* werd schelpkalk in ruime hoeveelheden vervaardigd, waarbij de ovens steeds meer werden gemoderniseerd. De schelpkalk werd tot die tijd tot schelpkalktrasmortels verwerkt. Na de Eerste Wereldoorlog doet cement zijn grootschalige intrede in Nederland, ten koste van die van schelpkalk, maar

\(^{133}\) Doon 1996.
\(^{134}\) Janse 1981.
omdat het door deze oorlog tevens onmogelijk was om steenkalk en cement uit België en Duitsland te importeren, bloeide de schelpkalkbranderij toch sterk op. Als gevolg van de crisis in de jaren 1930 en de import van Duitse hydraulische steenkalk verminderde de productie van schelpkalk echter met bijna tweederde. In 1941 werd zelfs serieus overwogen de schelpkalkbranderijen in Nederland te sluiten, ten voordele van de Belgische, Duitse en Nederlandse steenkalkindustrie. Tijdens de Tweede Wereldoorlog was er sprake van een sterke afname in bouwactiviteit en was het winnen van schelpen op de Waddenzee en Zeeuwse wateren onmogelijk vanwege de aanwezigheid van mijnen. Pas na mei 1945 kwam de productie van schelpkalk weer moeizaam op gang en in 1946 werd er alles aan gedaan om de schelpkalkindustrie rendabeler te maken. En met succes, want in de periode 1946 - 1955 bereikte de productie en afzet van schelpkalk een recordhoogte (100.000 ton per jaar). Daarna ging het bergafwaarts, tot in 1991 de op een na laatste branderij in Hasselt (Ov.) werd gesloten. Sinds 1994 fungeert het complex als gemeentelijk museum.

In tegenstelling tot de productie van steenkalkhydraat (zie § 3.1), werd schelpkalk lange tijd uitsluitend vervaardigd ten behoeve van schelpkalkmortels. Tegenwoordig vindt schelpkalkbloem ook toepassing in droge rookgasreiniging, afvalwaterzuivering en in de chemische industrie.

De huidige productie van schelpkalk

De schelpkalkbranderij in Harlingen werd in 1972 opgestart om tot 1987 (met een onderbreking aan het einde van de jaren zeventig en het begin van de jaren tachtig) schelpkalk te produceren. In 1989 werd de fabriek heropend in de vorm zoals die thans bekend is. Deze schelpkalkbranderij is ten tijde van het schrijven van dit boek voor onbepaalde tijd gesloten. Op dit moment wordt er in de Nederlanden dus geen schelpkalk geproduceerd. Schelpkalk™ is een beschermde handelsnaam van Schelpkalk Harlingen BV.\(^{135}\)

De moderne productie van schelpkalk is gebaseerd op de historische wijze van het branden van schelpen, waarbij als brandstof antraciet wordt gebruikt. Het brand-\(^{135}\) het motief om de soortnaam schelpkalk als handelsnaam Schelpkalk™ te beschermen was het op de markt verschijnen van steenkalkhydraten, al dan niet vermengd met schelpengruis, onder suggestieve benamingen als ware zij schelpkalk. V.m. M.L. Ouwehand, 2003. Door de bescherming als handelsnaam is er wel verwarring tussen de soortnaam en de merknaam ontstaan. Een vergelijkbaar probleem is de verwarring rond hydraulische kalkmortel. Soms wordt cement met gemalen kalksteen als zodanig verkocht.
Van grondstof tot mortel

proces wordt echter wel op eigentijdse wijze gestuurd en gevolgd, maar de verbrandingsresten van de brandstof zijn nog steeds aanwezig in het gebrande product. Hierdoor is de zuiverheid van de gebrande kalk vergelijkbaar met die van de historisch gebrande mortels. De fijnheid van de gebrande kalk wordt daarentegen niet bepaald door de wijze van branden, maar door de wijze van blussen. Dat gebeurt tegenwoordig ook nog steeds handmatig. Het fijnste bindmiddel, de kalkbloem, wordt verkregen door het gebluste product machinaal te bewerken en het grofste door na het blussen de kalk niet verder te bewerken. De eigenschappen van recent gefabriceerde schelpkalk zijn hierdoor zeer goed vergelijkbaar met die van de op historische wijze vervaardigde schelpkalk.

4 Het blussen van kalk

Een veel besproken onderwerp waarover tegenwoordig veel verwarring bestaat, is het blussen van de kalk. Het blussen van de kalk is een noodzakelijke stap in het gebruik van kalk als bindmiddel voor mortel, pleister of als kalkverf.

De aard van de grondstoffen, en uiteraard de aard van de kalk, maar ook de gewenste verwerkbaarheid en het gebruik van de kalk bepalen mogelijke opties voor het blussen van kalk en voor het – eveneens veel besproken – in de rot zetten.

Bij het blussen van kalk wordt de ongebluste kalk (CaO) gemengd met een zekere hoeveelheid water. De hoeveelheid water moet minstens voldoende zijn om alle CaO om te zetten in Ca(OH)$_2$ en om de verliezen door verdamping te compenseren. Het blussen van kalk is immers een exotherme reactie, wat wil zeggen dat er warmte vrijkomt bij het blussen. Een deel van het toegevoegde water zal daardoor verdampen. De blusreactie is een sterk expansieve reactie, wat verklaart waarom bij het blussen de kluiten ongebluste kalk uiteenvallen. Het eindproduct is een poeder of een deeg, afhankelijk van de hoeveelheid toegevoegd water. Wanneer er een overmaat water wordt toegevoegd en een kalkdeeg ontstaat, spreken we van nat blussen, wanneer er een poeder ontstaat dan spreken we van droog blussen.

4.1 Blussen van luchthardende kalk

Bij het blussen van luchthardende kalk, of min of meer zuivere CaO, zijn er verschillende mogelijkheden. In de restauratiewereld wordt vaak benadrukt dat de kalk in de rot moet worden gezet en dat goede kalk goed boterige kalkdeeg moet zijn. Maar is dat wel altijd het geval? Laten we kort de verschillende mogelijke wijzen van blussen van luchthardende kalk bekijken en de gevolgen voor de bouwpraktijk bespreken. Uiteraard kan de redenering ook worden omgedraaid en zal blijken dat voor bepaalde toepassingen een bepaalde blustechniek meer aangewezen is dan een andere.

Tegenwoordig wordt schelpkalk geblust in speciale hydratoren volgens het overloop-principe. Tijdens het blussen wordt voortdurend geroerd, waarbij uitgeblust kalkhydraat over keerschotten loopt en zwaardere, langzamer blussende delen langer onderin de hydrator blijven. In de installatie wordt juist voldoende water toegevoegd als nodig is voor de chemische omzetting, de verdamping als gevolg van de reactiewarmte en het bereiken van een vochtigheid van het eindproduct van 0,5% water. Daarnaast wordt schelpkalk ook nog op traditionele wijze op stort droog geblust en vervolgens gezeefd. De gebluste schelpkalk wordt na het blussen zo nodig via zeven en malen nog verder bewerkt.

Nat blussen

Vroeger werd luchtkalk meestal (maar zeker niet altijd) nat geblust. Het blussen van de kalk gebeurde vaak op de bouwplaats omdat het vervoer van de gebrande kalk(steen), die door het branden zowat één derde van zijn gewicht had verloren, gemakkelijker was dan het vervoer van het zwaardere kalkdeeg. Uit archeologische opgravingen in Pompeï is bleek echter dat kalk ook in de vorm van kalkdeeg werd verhandeld in amfora’s, vermoedelijk naar plaatsen waar er geen ruimte was voor het maken van een kalkput voor het blussen of waar slechts kleine hoeveelheden fijne kalk nodig waren voor bijvoorbeeld werken van geringe omvang zoals het maken van fresco’s of mozaïek.

Omdat noch bij het branden noch bij het blussen alle processen even homogen in het materiaal verlopen en bij de verwerking van de kalk absoluut vermeden

137 Adam 1984, p. 78, figuur 160.
moest worden dat er nog calciumoxide in de mortel zat, raadde men aan het kalkdeeg lange tijd te laten liggen alvorens het te gebruiken. Plinius (24-79 na Christus) schrijft drie jaar voor.138 Om dezelfde reden was het goed dooreenmengen van de kalk (vaak samen met het zand) zeer belangrijk. Dit gebeurde met een kalkhouw waarmee de kalkknollen en eventuele brokken calciumoxide konden worden verbrijzeld.

Plinius heeft wellicht zijn mosterd gehaald bij Vitruvius, dus is het interessant toe te lichten wat deze laatste hierover had te zeggen. In zijn tweede boek, hoofdstuk V, §2 en §3, geeft Vitruvius (eerste eeuw voor Christus)139 aan, hoe het komt dat men met kalk een mortel kan maken die hard wordt. In § 2.2 van hoofdstuk 2 hebben we deze tekst al geciteerd. Volgens Vitruvius is de uitharding en de binding van de kalkmortel het gevolg van de porositeit van de materialen waardoor ze goed aan elkaar hechten, alsof ze in elkaar worden verankerd via deze open poriën. Het branden van de kalksteen is in deze opvatting nodig om de openheid van de structuur van het materiaal te vergroten.

In de rot zetten van kalk

Nat blussen en het bewaren van het kalkdeeg voor deze te gebruiken wordt belangrijk geacht voor werken waar de kalk(mortel) een grote smeuïgheid moet hebben (zoals voor kalkverven). Deze werkwijze wordt aangeduid met historische termen zoals het rotten van de kalk, het in de rot zetten, het putten of het inkuilen van kalk.

De kalk moet goed uitgerotte boterige, kluitkalk zijn. Over de termijn van het rotten lopen de meningen nogal uiteen. Men spreekt van vier weken140 tot zes maanden141 en in heel oude recepten worden rottijden van vijf tot dertig jaar gehanteerd.142 Voor restaurateurs van muurschilderingen en van pleisterwerk is het rotten van de kalk dus erg belangrijk.

Cornelis Redelijkheid geeft in 1754 de voorkeur aan droog blussen boven nat blussen en putten. Volgens hem heeft het putten van kalk alleen zin wanneer het slecht geblust is en er nog ongebluste delen in de kalk aanwezig zijn. In 1775 noemt hij het putten zelfs een van de oorzaken voor slecht metselwerk.

\begin{itemize}
 \item 138 Adam 1984, ref. 108.
 \item 139 Vitruvius s.a.
 \item 140 Gesell 1935, p. 117.
 \item 141 Vierl 1975.
 \item 142 Jansen 1980, p. 74.
\end{itemize}
Kalkboek

Over de voordelen van het al dan niet in de rot zetten verschilde men aan het einde van de achttiende eeuw duidelijk van mening. Volgens Bommenee moet de gebrande kalksteen worden natgemaakt en op een hoop gelegd en de volgende dag worden gekeerd. Vervolgens wordt de kalk in kleine partijen in houten bakken dun gemaakt met vers water. Nadat het tot dunne modder is geroerd laat men het in een grote put in de grond lopen. Die put is gemaakt van hout of steen. De voor-gestelde werkwijze lijkt een combinatie te zijn van eerst droog blussen en vervol-gens in de rot zetten.

Brade stelt in 1827 dat men gebluste kalk zeer lang in een kuil kan bewaren zonder dat de kalk achteruit gaat. Integendeel zullen, door het vocht, delen die bij het blussen niet zijn opgelost alsnog worden geblust. Hij schrijft ook dat als men er voor zorgt dat het blussen goed en met zorg wordt gedaan, vers gebluste kalk even-goed is als kalk die lang ingekuild is geweest. Sommige deskundigen vinden inkuilen zelfs schadelijk omdat hierdoor de kalk te sterk smelt, waardoor klonten ontstaan die niet fijn te maken zijn.

Hoewel in bestekken slechts sporadisch melding wordt gemaakt van het putten van kalk zal het toch vaak zijn gedaan. Mogelijk werd het meer in de landelijke streken gedaan dan in het westen. De traditie van het putten van de kalk is in rurale streken langer in stand gebleven, dan in de stedelijke gebieden.

Meestal zal het blussen hebben plaatsgevonden in zogenaamde blusbakken. Nadat de kalk was uitgeblust liet men de kalkbrij uit de bak in een zogenaamde kalkput stromen. De zwaardere delen bezonken daar, zodat de bovenste laag in de put na verloop van enige tijd uit goed geblust kalkhydraat bestond. Soms werd het goed gebluste kalkhydraat overgeheveld naar een volgende put, waarin het kon opstijven tot een kalkdeeg. Het fijnste (lichtste) kalkhydraat gebruikte men voor pleisterwerk, het zwaardere voor het samenstellen van metselspecie.

Recent onderzoek heeft aangetoond dat het rotten van de kalk niet alleen leidt tot de vermindering van de gemiddelde grootte van de kalkhydraatkristallen, maar ook gepaard gaat met een wijziging van het type kristallen naar meer plaatvormige kristallen. Beide fenomenen leiden tot een toename van de specifieke oppervlakte (het

143 Bommenee 1988, p. 78.
144 Brade 1827, p 57.
blainegetal, zie hoofdstuk 1, § 1.1) van de kalk. Dit effect is aanmerkelijk, ook als de kalk slechts één of twee weken in de rot wordt gezet.

Het gevolg is dat de waterretentie (het vermogen om water vast te houden) en de verwerkbaarheid van de kalkdeeg met de tijd toenemen. In het verleden was het blussen van kalk, met name wanneer die voor pleister- en stukadoorswerk was bedoeld, ook belangrijk omdat daarmee het nablassen van de kalk kon worden voorkomen. De *nablussers* waren in de kalk aanwezig, doordat tijdens het branden niet alle schelpen of alle kalksteenbrokken volledig werden gebrand en omdat er vaak nog klontjes ongebluste kalk aanwezig waren (*bonen*). Tegenwoordig bestaat dit bezwaar niet meer, omdat er in het gebluste product geen *nablussers* aanwezig zijn. Dit komt door de industriële wijze waarop de kalk thans wordt vervaardigd, waarbij zowel het branden als het blussen op gecontroleerde wijze worden uitgevoerd, maar waarbij wel de historische technieken worden toegepast.

Voor het gebruik van metselwerk is het maar de vraag of de toename aan verwerkbaarheid en waterretentie zo belangrijk is. Uit vergelijkend onderzoek naar het effect van het vervangen van cement door kalkhydraat in bastaardmortels was immers reeds duidelijk dat kalkhydraat zelfs als droog poeder tot een belangrijke verbetering van de verwerkbaarheid van metselmortel leidt. Hieruit kunnen we afleiden dat deze winst in verwerkbaarheid niet altijd nodig was bij de opbouw van historisch metselwerk omdat deeg van vers gebluste kalk wellicht reeds voldoende verwerkbaar was. Deze conclusie staat de veronderstelling toe dat drooggebluste kalk voor het vervaardigen van (historische) metselmortels gebruikt kon worden.

Droog blussen

Traditioneel kan het droog blussen van kalk op verschillende manieren worden uitgevoerd. De meest bekende wellicht is het laten zakken van manden met kluiten gebrande (ongebluste) kalk in een waterbassin totdat de hevige exotherme reactie was afgelopen. Dit kon men zien aan het beëindigen van het *bubbelen* van het water. Dan worden de kluiten kalk verzameld en vermalen en vervolgens droog opgeslagen. In de moderne kalkfabrieken gebeurt het blussen van de kalk in een afgesloten mengmachine. Daar wordt net voldoende water voor de chemische reactie op de calciumoxide gesprenkeld. Uiteraard wordt daarbij rekening gehouden met het vochtverlies dat ontstaat door verdamping.

146 Van Balen 1990.
Er bestaat evenwel nog een andere manier van (droog) blussen die tot voor kort aan de aandacht was ontsnapt en nochtans door wijlen Prof. R. Lemaire werd gebruikt bij de restauratie van het Groot Begijnhof in Leuven in de jaren zeventig van de vorige eeuw. Deze methode is het blussen van de kalk door het vermengen van de ongebluste kalk met nat zand.

Verschillende historische afbeeldingen van bouwplaatsen tonen ons naast de werf een grote hoop waarnaast arbeiders een mengsel van kalk en zand door een mengen met een kalkhouw. In veel kalkmortel gebruikt voor het metselen stellen we vast dat de kalkmortel ook nog kalkpitten bevat. We zouden dat laatste niet verwachten indien het zand gemengd zou zijn geweest met een fijn kalkdeeg. In dat geval zouden de kalkpitten immers door de zwaartekracht in de kalkput zijn gezonken en zouden kalkkluiten lang de tijd hebben gekregen om te hydrateren en uiteen te vallen. Het onderzoek van K. Callebaut heeft aan het licht gebracht dat er aanwijzingen zijn om te veronderstellen dat kalk ook kon worden geblust door het te vermengen met nat zand en de mortel een tijdje te bewaren (afgeschermd van de koolzuur uit de lucht doordat de hoop vochtig werd gehouden). Regelmatig omzetten zorgt voor een goede verdeling van de kalk, het water en het zand en bevordert tevens het vergrijzen van de kalkkluiten. Hoe lang de kalk op deze wijze werd bewaard alvorens te worden gebruikt weten we niet. De aanwezigheid van een belangrijk deel kalkpitten in metselmortel doet vermoeden dat er niet altijd zoveel tijd aan de verwerking van de kalk voorafging. Voor de restauratie van het Groot Begijnhof van Leuven bewaarde wijlen prof. R. Lemaire de hoop kalk met zand gedurende één jaar. Overigens bestaat het vermoeden, dat door het blussen met nat zand niet alleen calciumhydraat, maar ook (wat) calciumsilicicaat ontstaat. Wellicht heeft dit een positieve invloed op de sterkte van de mortel.

Een interessante gedachte is dat op deze wijze zelfs (licht) hydraulische mortel zou kunnen ontstaan en de bouwers dit wellicht niet eens hebben opgemerkt. Immers binnen de veertien dagen is de hydraulische kalk nog niet gehydrateerd. Bovendien, wat zou het gevolg zijn geweest van de hydratatie van een deel van de

Callebaut 2000 II.

Vergelijk ook Maturing in Gibbons 1995, p. 22. De kwaliteit ... van traditionele kalkmortels wordt verbeterd door deze voor gebruik te laten rijpen. Indien mogelijk moet de mortel drie maanden voordat deze verwerkt wordt, worden gemengd. ... In het verleden heeft men, bijvoorbeeld bij het optrekken van massieve muren, de mortel vaak niet lang laten rijpen en lijkt deze vaak direct na het mengen te zijn gebruikt. Gibbons meldt tevens dat het rijpen bijdraagt aan de hechting tussen bindmiddel en aggregaat. Wanneer de kalk, nog heet van het blussen, direct met zand wordt gemengd, dan zal het oppervlak van het anders niet reactieve zand worden geëtst (p. 21).
Van grondstof tot mortel

kalk. Deze fractie zou zich voegen bij het inerte deel van de mortel, met name het zand. Wellicht is dit een antwoord op de vraag waarom sommige mortels met een rijke bindmiddelfractie toch konden worden gebruikt, zonder dat men last had van de sterke krimp die we daarvan gewoonlijk verwachten? Deze en andere vragen zullen echter een nader onderzoek vergen om met zekerheid beantwoord te kunnen worden.

In de kalkzandsteenindustrie is het blussen met nat zand vanaf de introductie van dit materiaal aan het einde van de negentiende eeuw gebezigd. Er zijn echter vooralsnog geen aanwijzingen dat deze werkwijze ook voor de mortelbereiding in Nederland grootschalig werd toegepast. De gangbare praktijk was daar het (nat) blussen in zogenaamde blusbakken (zie hiervoor).

4.2 Blussen van hydraulische kalk

Hydraulische kalk moet naargelang het aandeel vrije calciumoxide nog min of meer worden geblust. Omdat het eindproduct een hydraulisch bindmiddel is en dus met water verhardt, is duidelijk dat (gebluste) hydraulische kalk een droog poeder moet zijn dat pas gaat binden op het ogenblik dat men er water aan toevoegt bij het verwoorden van de mortel. Het blusprocedé moet ervoor zorgen dat alle CaO wordt omgezet in Ca(OH)$_2$ maar dat de hydraulische reactieve stoffen niet beginnen te hydrateren. De enige optie is daarom het droog blussen van de kalk.

5 Handel en distributie van kalk

De mogelijkheid van transport van bouwstoffen en dus ook van kalk was indertijd zeer beperkt. Het water is vanouds in de Nederlanden de belangrijkste transportweg en dat heeft zeker gecombineerd voor bulkgoederen zoals kalk. Mede daardoor kon een belangrijke havenstad als Dordrecht uitgroeien tot een belangrijke stapelplaats voor de aanvoer van kalk vanuit het stroomgebied van de Maas. Ook uit het verspreidingsgebied van de toepassingen van bijvoorbeeld Bentheimer zandsteen blijkt dat de waterwegen de aanvoerroutes vormden en het gebied bepaalden waarin een bouwmateriaal of bouwstof kon worden afgezet.

Aanvankelijk lagen de schelpkalkbranderijen achter de Noordzeekust, in de nabijheid van de veengebieden, die de brandstof (turf) leverden. Later exploiteerde men vooral kalkovens in het noorden van Nederland, waar schelpen als retourvracht werden aangevoerd door de schepen die turf naar de Hollandse steden vervoerden. Na de overschakeling op steenkool als brandstof verplaatst de schelpkalkproductie zich voor een belangrijk deel weer naar de Hollandse kust, waar de schelpen werden gewonnen en waar zich ook een belangrijk afzetgebied voor de geproduceerde schelpkalk bevond.
Kalkboek

De middeleeuwse stadsbesturen waren bezorgd over de kwaliteit van de kalk. In 1383 werd in Brussel een inspectie op de fabricage en de verkoop van dit product ingesteld. In Amsterdam mocht in 1531 niet meer met kalk worden gemetseld als dit product niet was gekeurd door het stadsbestuur.149

De reglementen van de bouwloges in Praag bevatten als belangrijkste voorwaarde voor het verkrijgen van de titel van \textit{meester metselaar}, dat men moest aantonen dat men beschikte over zeven kalkputten.150 Het aantal putten slaat wellicht op het aantal jaren dat de kalk moest liggen. Hiermee werd een garantie ingebouwd voor de kwaliteit van de kalk. Het kalkdeeg moest lang genoeg gelegen hebben (rotten) om er zeker van te zijn dat de kalk geen \textit{levende kalk} meer bevatte. Men wilde er echter niet alleen zeker van zijn dat de kalk inderdaad volledig was geblust. Aan het rotten werd ook een verbetering van de verwerkbaarheid van de kalkmortel toegeschreven.151

Recente aanwijzingen in onderzoek naar mortels uit gebouwen uit verschillende perioden nopen ons er toe dit beeld wat te relativeren. Het droog blussen van de kalk door het mengen van de ongebluste kalk met nat zand zou ook een vrij courante praktijk geweest zijn.152 In dat geval heeft de kalkdeeg geen tijd gehad om te rotten alvorens te worden verwerkt in de mortel. Dit zou erop wijzen dat er verschillende kwaliteiten kalken bestonden voor verschillende doeleinden.

6 De componenten en hun verhoudingen

6.1 Het mortelrecept

Bij iedere metselwerkrestauratie waar kalkmortel op grond van onder andere de compatibiliteit met de historische mortel en bakstenen wordt toegepast, reist de vraag naar de samenstelling van de mortel. De samenstelling wordt gegeven in een zogenaamd mortelrecept, waarin de componenten worden genoemd en hun verhoudingen. Traditioneel zijn deze recepten gegeven in volumeverhoudingen van de materialen. In dit boek zijn wij aan de gewoonte om in volumeverhoudingen te werken getrouw gebleven. In de mortelindustrie en bij meer wetenschappelijke benaderingen van de morteltechnologie is het tegenwoordig gebruikelijk om met massaverhoudingen te werken, uitgedrukt in droge stoffen (hoewel daarbij door-

149 Van de Walle 1959, p.65.
150 v.m. Prof. R.M. Lemaire, verwijzend naar de nog bestaande exemplaren van de Praagse reglementen van de Bauhütte, juni 1991.
151 Van Balen 1982.
152 Callebaut 2000 I.
Van grondstof tot mortel

gaans wordt uitgegaan van vochtig zand!). Let wel, als het om de hoeveelheid kalk gaat, is het belangrijk om te weten of er sprake is van kalkpoeder of van kalkdeeg.

6.2 Historische mortels

Gegevens omtrent historische mortels kunnen worden verkregen door middel van bronnenonderzoek. Daarbij worden onder andere historische bestekken geraadpleegd, voor zover die nog beschikbaar en toegankelijk zijn. Bij restauraties wordt echter doorgaans voor een objectspecifieke benadering gekozen. Daartoe worden onderzoeken aan monsters van de gebruikte mortels en bakstenen verricht. De gegevens uit bronnenonderzoek hebben daarbij hoogstens een ondersteunende functie (hieruit blijkt bijvoorbeeld dat een normale, te verwachten samenstelling is gebruikt of juist een opmerkelijke afwijkende, en of een mortel conform bestek is gebruikt of bij de uitvoering juist voor een andere samenstelling is gekozen).

Een zeer bruikbare methode voor het objectspecifieke onderzoek is het petrografisch onderzoek (zie § 1.3 in hoofdstuk 5), waarbij circa 20 tot 30 \(\mu \)m dikke preparaten van een materiaal worden onderzocht met gebruikmaking van een polarisatiemicroscoop. Omdat op deze wijze ongestoorde monsters worden onderzocht, verkrijgt men informatie omtrent het soort bindmiddel, de eventueel toegevoegde puzzolanen, de verhouding tussen bindmiddel en toeslagzand en de korrelopbouw van het zand. Bovendien zijn eventuele degradatieverschijnselen van de mortels te zien. Ook natchemische onderzoeksmethoden leveren bruikbare resultaten op bij de bepaling van de samenstelling van historische mortels. De mortels moeten dan wel worden vermalen en het bindmiddel wordt opgelost met zuur, waardoor zo’n onderzoek uitgevoerd wordt aan gestoorde monsters.

Wanneer historische mortels worden onderzocht, blijkt een scala aan mengverhoudingen te worden gevonden gaande van verhoudingen van 2 delen kalk op 1 deel zand tot 1 deel kalk op 4 delen zand. Deze zijn bepaald door meer of minder bewuste keuzen van de toenmalige bouwers.

In tabel 6 zijn een aantal mortelrecepten opgesomd, die uit het handboek van kapitein Brade,\(^{153}\) het bouwmaterialenboek van Van der Kloes\(^{154}\) en historische bestekken voor de bouw van molens\(^{155}\) konden worden verzameld.

\(^{153}\) Brade 1827.
\(^{154}\) Van der Kloes 1893.
\(^{155}\) Ontleend aan Groot 2002.
In het algemeen bevatten mortels uit de achttiende eeuw en ouder veel meer kalk ten opzichte van tras of kalk en tras ten opzichte van zand dan mortels uit de negentiende eeuw en jonger. In de tabel is daarom een tweedeling gemaakt. De grote verschillen in mortelrecepturen hebben voor een belangrijk deel te maken met de samenstelling van de kalk.

<table>
<thead>
<tr>
<th>Historische mortelrecepten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type mortel</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Sterke trasmortel</td>
</tr>
<tr>
<td>Achttiende eeuw en ouder</td>
</tr>
<tr>
<td>Negentiende eeuw en jonger</td>
</tr>
<tr>
<td>Sterke basterd trasmortel</td>
</tr>
<tr>
<td>Achttiende eeuw en ouder</td>
</tr>
<tr>
<td>Negentiende eeuw en jonger</td>
</tr>
<tr>
<td>Slappe basterd trasmortel</td>
</tr>
<tr>
<td>Achttiende eeuw en ouder</td>
</tr>
<tr>
<td>Negentiende eeuw en jonger</td>
</tr>
<tr>
<td>Kalkmortel</td>
</tr>
<tr>
<td>Achttiende eeuw en ouder</td>
</tr>
<tr>
<td>Negentiende eeuw en jonger</td>
</tr>
<tr>
<td>Basterd cementmortel</td>
</tr>
<tr>
<td>Negentiende eeuw en jonger</td>
</tr>
</tbody>
</table>

Verklaring van de gegevens in de tabel:
De getallen geven volume delen. De notatie 1-1½ betekent dat de hoeveelheid kan variëren, afhankelijk van toepassing en/of bron (literatuur), van één tot anderhalf deel. De recepten van negentiende eeuw en jonger zijn voornamelijk uit Van der Kloes 1893 en gaan uit van droge kalkpoeder. Wanneer wordt uitgegaan van een stijf kalkdeeg wordt twee keer zoveel tras en zand toegevoegd.
met het verschil in eigenschappen van de afzonderlijke mortelcomponenten. Daarbij spelen onder andere de maalfijnheid van tras, mate waarin de kalk is gebrand, wijze van blussen van de kalk en de zuiverheid van de componenten een rol. Een deel van de kalk of de tras moet zich bij de oudere mortels feitelijk als een inert toeslagmateriaal gedragen hebben (zie § 2.10 van hoofdstuk 2).

6.3 Het mengen van componenten voor mortels

In § 3 van hoofdstuk 5 zal nader worden ingegaan op de samenstelling van recepten van restauratiemortels: de componenten van de mortels in verschillende verhoudingen. Verschillende mengverhoudingen en de keuze van het soort bindmiddel bepalen de uiteindelijke eigenschappen van de mortels.

Het bepalen van een mortelreceptuur moet in het algemeen overgelaten worden aan deskundigen. Voor restauratiewerk geldt daarbij bovendien dat men niet kan uitgaan van vaste recepten, maar dat de mortel aan de specifieke situatie moet worden aangepast. Dat vergt het nodige onderzoek, aangezien men dan ook die specifieke situatie grondig moet kennen.

Zand en kalkpap

Beschouwen we allereerst het toeslagzand. Dit bestaat uit min of meer bolvormige korrels van mineralen en gesteentefragmenten (zie § 2.5). Laten we aannemen dat het zand droog is. De korrels zijn dan op elkaar gestapeld en tussen de korrels bevindt zich lucht. Die hoeveelheid lucht wordt uitgedrukt als het luchtgevuld poriënvolume van het zand. Dit volume kan worden bepaald door aan een bekend volume van dit droge zand water toe te voegen, waardoor de lucht wordt verdrongen en het luchtgevuld poriënvolume zich juist met water heeft gevuld. De hoeveelheid toegevoegd water is dan gelijk aan het luchtgevuld poriënvolume.

Nu wordt aan hetzelfde droge zand geen water toegevoegd, maar een dunne kalkpap en laten we aannemen dat de pap zich bijna als water gedraagt. Wanneer het volume aan toegevoegde kalkpap gelijk is aan het luchtgevuld poriënvolume van het zand en we laten deze specie verharden zonder dat het bindmiddel krimpt, dan bestaat deze mortel uit op elkaar gestapelde zandbolletjes, met daartussenin kalk. De hoeveelheid toegevoegde kalk wordt in dit geval door ons het kalkgevuld poriënvolume genoemd. Het kalkgevuld poriënvolume is dan gelijk aan het luchtgevuld poriënvolume van het toeslagzand. Dit gedachte-experiment wijkt echter af van de werkelijkheid: het volume van de kalkpap neemt tijdens het drogen af (drogingskrimp), waardoor voor deze volumeafname zou moeten worden gecorrigeerd. Voor
de gedachtevorming hebben we daarom aangenomen dat de kalkpap niet krimpt en dat de specie een mortel oplevert zonder krimp van het bindmiddel.

In de *vette* specie die zojuist is samengesteld zijn geen open, luchtgevulde poriën meer aanwezig. (Roep hierbij in herinnering dat dit een hypothetisch experiment is; in werkelijkheid ontstaan ten gevolge van de droging wel open poriën.) Wanneer meer kalkpap wordt toegevoegd dan het luchtgevuld poriënvolume, gaan de zandkorrels in de pap *drijven*. Zij raken elkaar niet meer en alle korrels zijn omgeven door bindmiddel. We spreken in dit geval van een *zeer vette* specie. Wordt echter minder kalkpap toegevoegd dan het luchtgevuld poriënvolume, dan kunnen niet alle poriën zich geheel met bindmiddel vullen en blijven open, luchtgevulde poriën over. Dit is een *schrale* kalkspecie. Van een *zeer schrale* kalkspecie is sprake wanneer het luchtgevuld poriënvolume van de specie gelijk is aan, of groter is dan het gehalte aan bindmiddel.

In werkelijkheid gedraagt de kalkpap zich niet als water en wordt het bindmiddel intensief door het zand gemengd. Bovendien bepaalt niet alleen de hoeveelheid bindmiddel of het vochtgehalte daarvan de wijze waarop de korrels van het toeslagzand in de uiteindelijk uitgeharde mortel aanwezig zijn. Ook de wijze van mengen, de ruwheid van de zandkorrels en andere factoren zijn bepalend. Om deze reden bestaat er vaak een verschil tussen het hierboven beschreven gedachteexperiment en de werkelijkheid van de bouwpraktijk. De hiervoor omschreven indeling in *vette* tot *zeer schrale* mortels is zeer bruikbaar wanneer we verharde (en verouderende) mortels bestuderen. Op het moment van het mengen van de componenten moet de hoeveelheid kalk die nodig is om tot een *zeer vette*, *vette*, *schrale* of *zeer schrale* mortel te komen echter worden gecorrigeerd in verband met zaken zoals krimp en het verdwijnen van water.

Het luchtgevuld poriënvolume van zand wordt niet bepaald door de korrelgrootte van het zand, maar (vooral) door de *korrelgrootteverdeling*, de korrelopbouw van het zand. Het lijkt vreemd, maar het luchtgevuld poriënvolume van zand waarin de korrels ongeveer even groot zijn, is gelijk aan dat van bijvoorbeeld een berg erwten, pingpongballen, of voetballen en bedraagt in het geval van een driehoeksstapeling circa één derde van het totale volume, bij vierkantstapeling is het poriënvolume zelfs 48%. Eenderde van het volume aan zand bestaat dus uit lucht, of in geval van een *vette* mortel uit kalk.

Zand waarin de korrels ongeveer allemaal even groot zijn wordt *goed gesorteerd* zand genoemd. Wanneer sprake is van korrels van verschillende afmetingen, dan wordt van *slecht gesorteerd* zand gesproken. In slecht gesorteerd zand kunnen korreltjes aanwezig zijn die zo klein zijn dat zij passen in de poriën tussen de grote korrels,

Laten we deze beschouwing over zand en bindmiddelvolumes vertalen naar de bouwpraktijk: aan één volumedeel (schep, emmer, kruiwagen) kalkpap worden twee volumedelen zand toegevoegd. In deze specie hebben bindmiddel en zand een volumeverhouding van 1 : 2. Eenderde van het totale volume bestaat uit kalk en tweederde bestaat uit zandkorrels. Dit is dus de mengverhouding van een vette mortel. We moeten ons hierbij wel een aantal dingen bedenken. Zo gaat dit alleen op met een zand dat uit exact even grote ronde zandkorrels bestaat (een zeer goed gesorteerd zand met zeer hoge sfericiteit). Ook geldt het alleen wanneer er een kalkpap wordt gebruikt en niet – zoals tegenwoordig gebruikelijk is – een droog kalkpoeder.

Omdat de korrelgrootte van het toeslagzand niet gelijk is en de zandkorrels geen ideale bolvorm hebben ligt de bindmiddel-zandverhouding van een vette mortel in de bouwpraktijk meestal tussen 1 : 2 en 1 : 3, afhankelijk van het soort zand dat wordt gebruikt. Wat die verhouding precies is, hangt onder andere af van de zeefkromme van het zand. Door het zand met verschillende zeven te sorteren en elke fractie die op een zand achter blijft te wegen en in een grafiek op een as van zeefdiameters uit te zetten krijgt men deze zeefkromme. Is er sprake van een continue zeefkromme, die voldoet aan een ideaal verloop, dan passen kleinere zandkorreltjes precies in de ruimten die tussen de grotere zijn overgebleven. Als er daarbij voldoende zeer fijne korreltjes aanwezig zijn, is er nauwelijks meer ruimte voor een kalkpap tussen de korrels aanwezig. Het komt in de bouwpraktijk daarom zelfs voor dat bij een zand met voldoende fijne korreltjes en een continue zeefkromme al bij een bindmiddel-zandverhouding van 1 : 4 een vette mortel ontstaat.

Vette en zeer vette species bevatten verhoudingsgewijs meer bindmiddel dan het luchtgevuld poriënvolume van het zand. Het gaat hierbij om verhoudingen van bijvoorbeeld 1 : 1, maar soms zelfs van 2 : 1. Schrale en zeer schrale species worden verkregen door verhoudingsgewijs minder kalk toe te voegen dan het luchtgevuld poriënvolume, dus slechts in een verhouding 1 : 3 tot 1 : 5.

Wanneer historische mortels worden onderzocht, blijkt een scala aan mengverhoudingen te worden gevonden, bepaald door meer of minder bewuste keuzes van de
Figuur 10
Van grondstof tot mortel

bouwers. De mengverhoudingen zijn immers bepalend voor de eigenschappen van de mortels, naast de belangrijke keuze van het soort bindmiddel: hydraulische, of niet hydraulische kalk. Omdat schrale en zeer schrale mortels open poriën bevatten, bezitten zij bijvoorbeeld een groter waterdoorlatend vermogen dan vette en zeer vette mortels.

Keuze van de aard van het bindmiddel kalk

Nu de bepalende rol van het toeslagzand in mortels is uiteengezet, zal aandacht worden geschonken aan het bindmiddel: hydraulische steenkalk of niet hydraulische luchthardende kalk. Niet alleen in verband met de mechanische belastbaarheid van het bindmiddel speelt de keuze van de aard van het bindmiddel en zijn aandeel in de mortel een belangrijke rol, maar ook de omstandigheden waaronder de mortel moet uitharden. Voor de uitharding van luchthardende kalk is het immers noodzakelijk dat koolzuurgas uit de lucht met de vrije kalk kan reageren. Daartoe moet de mortel nog enigszins vochtig zijn, maar vooral niet te nat. Als de relatieve luchtvochtigheid (in de poriën) meer dan 90% bedraagt, verloopt de carbonatatiereactie zo traag, dat de mortel nog maar nauwelijks verhard. Voor de uitharding van hydraulische kalk is juist water nodig.

Uit gestandaardiseerde proeven op de druksterkte van mortel blijkt dat hydraulische mortels over een hogere druksterkte beschikken dan niet hydraulische mortels. De reactieproducten van hydraulische componenten en van puzzolanen dragen bij tot de verhoging van de eindsterkte. Hydraulische kalkmortels worden mede om deze reden dan ook aangetroffen in mechanisch zwaar belaste gebouwdelen of in constructies die sneller mechanisch (moeten) worden belast. We dienen echter te onthouden dat bij vervorming van het metselwerk als geheel niet zozeer de druksterkte van de mortel, maar wel de treksterkte van de baksteen of natuursteen bepalend is voor de druksterkte van het metselwerk. De interactie tussen de baksteen en de mortel in het metselwerk maakt dat de mortel in de voeg horizontaal samengedrukt wordt. Hierdoor neemt de druksterkte van de mortel aanzienlijk toe en wijzigt tegelijkertijd het vervormingsgedrag van het metselwerk van een bros naar een

Figuur 10

←Schematische weergave met bolstapelingen van: a₁, een zeer goed gesorteerd zand, waarbij het luchtgevuld poriënvolume circa \(\frac{1}{3} \) van het totale volume bedraagt, b₁, en c₁, minder goed gesorteerde zanden, die een meer continue zeeffkromme kennen en waarbij het luchtgevuld poriënvolume in b₁ circa \(\frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \) en in c₁, circa \(\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} = \frac{1}{27} \) van het volume bedraagt. In situatie d₁, waarin een zandfractie ontbreekt (de zeeffkromme discontinu is) is het luchtgevuld poriënvolume groter dan in situatie c₁, namelijk weer circa \(\frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \) (zoals in situatie b₁).

In het tweede deel van deze figuur zijn de bijbehorende ‘zeeffkrommes’ weergegeven: a₂ de kromme behorend bij a₁, b₂ de kromme behorend bij b₁, enz.
Kalkboek

plastisch materiaal. Ook het feit dat hydraulische bindmiddelen in de hele massa vrij snel uitharden (en niet eerst aan de oppervlakte zoals luchthardende kalk) heeft zo zijn invloed op keuze van de juiste kalksoort.

Hydraulische kalkmortels en kalkmortels die hydraulische eigenschappen hebben verkregen door bijmenging van natuurlijke of synthetische puzzolanen, hebben voor hun verharding water nodig (zie § 7). Dit water wordt aan de specie onttrokken, maar moet voor de verharding in voldoende mate aanwezig blijven. Ook na de eerste fasen van de verharding is vaak water voorhanden in het milieu waarin het werk is geplaatst: funderingen blijven vochtig door grondwater en kademuren worden bevochtigd door het water dat zij moeten keren. Als puzzolaan wordt vaak tras toegevoegd aan een vette mortel, waardoor de mortel een hoge eindsterkte bereikt en bovendien in een vochtig milieu gedijt; het in de onderste delen van opgaand metselwerk opgenomen trasraam dankt hieraan zijn naam. Hydratatie en puzzolane reacties gaan ongehinderd voort en blijven bijdragen aan de eindsterkte van het werk. Vitruvius heeft dit in de eerste eeuw na Christus al duidelijk vermeld in zijn bouw-handboek.

Luchthardende kalkmortels verharden in eerste instantie op het contact met de lucht, waaruit zij koolzuurgas (CO₂) onttrekken ten behoeve van de carbonatatie van de vrije kalk. Dit impliceert dat zij niet over hun gehele massa uitharden, zoals het geval is bij hydraulische kalkmortels. Wanneer voor luchthardende kalkmortels wordt gekozen moet daar rekening mee gehouden worden. Het koolzuurgas uit de lucht moet tot de mortel kunnen toetreden (waardoor deze mortel bijvoorbeeld ongeschikt is om onder water toegepast te worden). Doordat een mortel met luchthardende kalk langzamer en vaak onvollediger verhard dan een mortel met hydraulische kalk kan deze mortel minder gemakkelijk mechanisch zwaar belast worden en duurt het langer voordat de mechanische sterkte is opgebouwd (waardoor er niet in enkele dagen tijd een hoge muur mee gebouwd kan worden). Luchthardende mortels kunnen zonder enig probleem worden toegepast in niet te massief metselwerk dat – liefst – tweezijdig in contact staat met lucht en dat bovendien niet te zwaar belast wordt, zoals bijvoorbeeld het geval is in inpandige gewelven van kerkgebouwen. Ook voor inboetwerk zijn deze mortels geschikt. Het optrekken van massief metselwerk, zoals gevels en muren, behoort zeker tot de mogelijkheden. Dan mag men echter niet te snel opmetselen maar moet men met de nodige tussenposen telkens enkele lagen aan het metselwerk toevoegen.

Van grondstof tot mortel

In de hierna volgende paragraaf zal nader worden ingegaan op de wijzen waarop kalkmortels verharden.

7 Verharding van kalkspecie tot mortel

7.1 Carbonatatie of de uitharding van luchtkalk

De carbonatatie kan wellicht het best worden toegelicht aan de hand van de beschrijving van de kalkcyclus. De kalkcyclus beschrijft hoe uit kalksteen kalkhydraat wordt vervaardigd en hoe door de carbonatatie deze kalk uithardt in een chemische vorm die dezelfde is als die van de grondstof.

Wanneer de kalksteen wordt verhit tot een temperatuur van ongeveer 900 °C, wordt CaCO$_3$ omgezet in CaO, of ongebluste kalk. Hierbij ontsnapt koolzuurgas (CO$_2$). De reactie kan als volgt worden geschreven:

\[
\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \uparrow \text{gas}
\]

Door het mengen van de gebrande kalk met water wordt het CaO geblust. Dit is een sterk exotherme en expansieve reactie waardoor de kluiten worden verpulverd en omgezet in kalkhydraat:

\[
\text{CaO} + \text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2
\]

\[
\begin{align*}
\text{3a} & \quad \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3 \\
\text{3b} & \quad \text{Ca(OH)}_2 + \text{H}_2\text{CO}_3 \rightarrow \text{CaCO}_3 + 2 \text{H}_2\text{O}
\end{align*}
\]

Voor het gemak voegen we de laatste twee formules vaak samen:
3 \[\text{Ca(OH)}_2 + \text{CO}_2 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O} \]

Deze reactie is eveneens exotherm. Meestal gaat het carbonatatieproces in kalk-mortel traag omdat de diffusie van het koolzuurgas uit de lucht, die slechts in zeer geringe concentratie aanwezig is, in de poriënstructuur van de mortel moeilijk verloopt. De carbonatatie begint pas als de mortel het grootste deel van zijn vocht kwijt is, omdat het koolzuurgas uit de lucht pas dan de kalk kan bereiken. De eerste ‘verharding’ is dus vergelijkbaar met die van klei en ontstaat alleen door het droger worden. In het inwendige van dikke muren kan het soms letterlijk eeuwen duren, voordat de echte verharding, de carbonatatie, plaats vindt. Maar helemaal droog mag de mortel niet zijn, want zoals we in formule 3a kunnen zien is er voor de verharding ook water nodig.

7.2 Hydratatie of de uitharding van hydraulische kalk

Met hydratatie is menigeen vandaag de dag vertrouwd aangezien het aan de basis ligt van de uitharding van portlandcement. Calciumsilicaten en andere oxiden die in hydraulische bindmiddelen voorkomen zullen, wanneer ze met water in contact worden gebracht, reageren tot gels en later tot structuren die de mortel doen verstarren en uitharden. Aangezien het water in de massa van de mortel aanwezig is, gebeurt deze reactie in de massa van de mortel overal tegelijk. Hydraulische bindmiddelen die voornamelijk bestaan uit dicalciumsilicaten zullen evenwel veel trager reageren dan deze bestaande uit voornamelijk tricalciumsilicaten, zoals portlandcement. Juist dit maakt voor een belangrijk deel het verschil uit tussen de verharding van hydraulische kalk en portlandcement.

Een hydraulische kalk bestaat voornamelijk uit CaO · SiO₂ en Ca(OH)_2. Hoe meer kalk uit de eerste stof bestaat, des te sterker hydraulisch de kalk is. CaO · SiO₂ verhardt met water:

\[2 \left(2 \text{CaO} \cdot \text{SiO}_2 \right) + 4 \text{H}_2\text{O} \rightarrow 3 \text{CaO} \cdot 2 \text{SiO}_2 \cdot 3 \text{H}_2\text{O} + \text{Ca(OH)}_2 \]

De Ca(OH)_2 zal mogelijk met reactieve silicium-, aluminium- of ijzerverbindingen reageren (voor zover aanwezig), maar het grootste deel ervan kan alleen volgens formule 3 verharden. Onder water zal die component dus niet of nauwelijks verharden.

Voor de verharding van deze hydraulische bindmiddelen is dus water nodig. Indien dit water niet aanwezig is, verlopen deze reacties niet. Men spreekt dan van verbranden van de mortel. Onder gunstige omstandigheden kan de reactie verder verlopen als de mortel naderhand weer nat wordt. Vaak leidt verbranden echter tot verminderde samenhang.

7.3 Werking van puzzolanen

De reactie van puzzolanen met de vrije kalk in de mortel levert een bijdrage aan het verhardingsproces en aan de sterkte van kalkmortels. Puzzolanen en met name tras bevatten vrije silica, die dus niet gebonden is in de kristalroosters van kristallijne mineralen. Deze vrije silica reageert met het kalkhydraat onder de vorming van calciumsilicaathydraat (C-S-H).

\[
3 \text{Ca(OH)}_2 + 2 \text{SiO}_2 \cdot \text{H}_2\text{O} \rightarrow 3 \text{CaO} \cdot 2 \text{SiO}_2 \cdot 3 \text{H}_2\text{O} + \text{H}_2\text{O}
\]

De volgens deze formules gevormde calciumverbindingen zijn respectievelijk tricalcium-disilicaat-hydraat, tricalcium-aluminium-hydraat en tricalcium-ferriet-hydraat.

Een andere mogelijkheid is om gebakken klei (Al\textsubscript{2}O\textsubscript{3} • 2 SiO\textsubscript{2}) te vermalen en met de gebluste kalk te vermengen. Gemalen gebakken klei is een synthetisch puzzolaan. Samen met kalk verhardt dit puzzolaan volgens de formule:

\[
7 \text{Ca(OH)}_2 + 2 (\text{Al}_2\text{O}_3 \cdot \text{SiO}_2) + 2 \text{H}_2\text{O} \rightarrow
2 (2 \text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot \text{SiO}_2 \cdot \text{H}_2\text{O}) + 3 \text{CaO} \cdot 2 \text{SiO}_2 \cdot \text{H}_2\text{O} + 6 \text{H}_2\text{O}
\]

Omdat hydraulische reacties in hydraulische kalkmortels eveneens hun bijdrage leveren aan het verhardingsproces, worden puzzolanen met name toegevoegd aan bindmiddelen met geringe of afwezige hydraulische eigenschappen, zoals luchtkalk. Puzzolanen zijn dus geen bindmiddel op zichzelf, ze vormen een hydraulisch bindmiddel door de reactie met kalkhydraat.

Kalkhydraat in kalkmortels waaraan puzzolanen zijn toegevoegd verhardt op twee wijzen. Ten dele vindt een puzzolane reactie plaats waarbij calciumgels ontstaan (mits de mortel voldoende lang vochtig blijft), die vervolgens uitharden en daar-
naast gebeurt de uitharding door carbonatatie (mits voldoende koolzuurgas uit de lucht de vrije kalk kan bereiken) zoals bij luchtkalk.

7.4 Portlandcement

De klinker (gebrande grondstof) waaruit portlandcement wordt gemalen bestaat in hoofdzaak uit een viertal stoffen:

3 CaO · SiO$_2$
tricalcium-silicaat (kort aangeduid als C$_3$S),

2 CaO · SiO$_2$
dicalcium-silicaat (kort aangeduid als C$_2$S),

3 CaO · Al$_2$O$_3$
tricalcium-aluminaat (kort aangeduid als C$_3$A),

4 CaO · Al$_2$O$_3$ · Fe$_2$O$_3$
tetracalcium-aluminaat-ferriet (kort aangeduid als C$_4$AF).

Deze stoffen verharden wanneer er water aan wordt toegevoegd. Bij de reactie van tricalcium-silicaat en dicalcium-silicaat ontstaat, behalve silicat-hydraten, ook calciumhydroxyde (7a en 7b). Die calciumhydroxyde kan zich vervolgens met de vrije SiO$_2$ · H$_2$O, Al$_2$O$_3$ · H$_2$O en Fe$_2$O$_3$ · H$_2$O binden (zie de reacties 5a tot en met 5c). Bij de reactie van tricalcium-aluminaat en tetracalcium-aluminaat-ferriet vormt zich geen calciumhydroxide (7c en 7d).

7a $2 (3 \text{CaO} \cdot \text{SiO}_2) + 6 \text{H}_2\text{O} \rightarrow 3 \text{CaO} \cdot 2 \text{SiO}_2 \cdot 3 \text{H}_2\text{O} + 3 \text{Ca(OH)}_2$

7b $2 (2 \text{CaO} \cdot \text{SiO}_2) + 4 \text{H}_2\text{O} \rightarrow 3 \text{CaO} \cdot 2 \text{SiO}_2 \cdot 3 \text{H}_2\text{O} + \text{Ca(OH)}_2$

7c $3 \text{CaO} \cdot \text{Al}_2\text{O}_3 + 6 \text{H}_2\text{O} \rightarrow 3 \text{CaO} \cdot 2 \text{Al}_2\text{O}_3 \cdot 6 \text{H}_2\text{O}$

7d $4 \text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot \text{Fe}_2\text{O}_3 + 2 \text{Ca(OH)}_2 + 10 \text{H}_2\text{O} \rightarrow 3 \text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 6 \text{H}_2\text{O} + 3 \text{CaO} \cdot \text{Fe}_2\text{O}_3 \cdot 6 \text{H}_2\text{O}$

De belangrijkste componenten van portlandcement zijn C$_3$S en C$_3$A. Cementsteen bestaat bijgevolg voor een groot deel uit tricalcium-disilicaat-hydraat (3 CaO · 2 SiO$_2$ · 3 H$_2$O) en tricalcium-aluminaat-hydraat (3 CaO · Al$_2$O$_3$ · 6 H$_2$O). De bestanddelen van cement vormen tijdens de verharding kleine kristallen en amorfe aandelen, die stevig aan elkaar verkit zijn. Daartussen bevinden zich vele kleine poriën. De snelle uitharding en relatief hoge sterkte van portlandcementsteen is voornamelijk te danken aan de vorming van tricalcium-disilicaat-hydraat.

Onder invloed van het koolzuurgas uit de lucht zal ook de cementsteen carbonateren. Het vrije calciumhydroxide (niet gebonden bij de verharding) die nog in de cementsteen aanwezig is, reageert op dezelfde wijze als het calciumhydroxide in luchtkalk:

3a $\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3$
Van grondstoff tot mortel

3b \[\text{Ca(OH)}_2 + \text{H}_2\text{CO}_3 \rightarrow \text{CaCO}_3 + 2 \text{H}_2\text{O} \]

Maar ook de hydratatieproducten, die volgens de reacties 7a tot en met 7d zijn gevormd, kunnen carbonateren. Als voorbeeld geven we hier de carbonatatie van de belangrijkste component van portlandcementsteen (tricalcium-disilicaat-hydraat); de andere componenten carbonateren op vergelijkbare wijze.

8a \[\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3 \]

8b \[3 \text{CaO} \cdot 2 \text{SiO}_2 \cdot 3 \text{H}_2\text{O} + 3 \text{H}_2\text{CO}_3 \rightarrow 3 \text{CaCO}_3 + 2 \text{SiO}_2 + 6 \text{H}_2\text{O} \]

Het C\text{3}A verhardt heel snel en heftig en ook het C\text{3}S verhardt snel. Zonder maatregelen zou er geen tijd zijn om portlandcement te verwerken. Daarom voegt men vaak een stof toe die de verharding van de portlandcement enigszins vertraagt, namelijk een kleine hoeveelheid (maximaal 5\%) gips (CaSO\text{4}). Het verharden van de cement wordt dankzij het gips tijdelijk geblokkeerd door de vorming van (primair) ettringiet. Het ettringiet vormt een slecht oplosbare laag om de cementkorrel, die de verharding van de cement voorkomt.

9a \[3 \text{CaO} \cdot \text{Al}_2\text{O}_3 + 3 \text{CaSO}_4 + 32 \text{H}_2\text{O} \rightarrow 3 \text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3 \text{CaCO}_3 \cdot 32 \text{H}_2\text{O} \]

We mogen primair ettringiet niet verwarren met secundair ettringiet, een bouw­schadelijke verbinding die kan ontstaan als de verharde mortel met bepaalde zwavelverbindingen in contact komt. Door de volumevergroting waarmee de vorming van ettringiet gepaard gaat, wordt de mortel kapot gedrukt.

Niet al het tricalcium-aluminaat zal met gips reageren. Een deel zit tijdens de vorming van ettringiet nog opgesloten in de cementkorrel en een ander deel hydrateert:

9b \[3 \text{CaO} \cdot \text{Al}_2\text{O}_3 + 6 \text{H}_2\text{O} \rightarrow 3 \text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 6 \text{H}_2\text{O} \]

Met dit hydraat zal de ettringiet weer tot een nieuwe stof reageren, zodat de blokkade van de verharding na verloop van tijd opgeheven wordt. De binding van de mortel kan dan plaatsvinden:

9c \[3 \text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3 \text{CaCO}_3 \cdot 32 \text{H}_2\text{O} + 2 (3 \text{CaO} \cdot \text{Al}_2\text{O}_3 + 6 \text{H}_2\text{O}) \rightarrow 3 (3 \text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot \text{CaSO}_4) + 2 \text{H}_2\text{O} \]

7.5 Hechting van kalkmortel aan de steen

Wanneer kalkmortel toegepast wordt bij het metselen, pleisteren of voegen, dan is het voor de duurzaamheid noodzakelijk dat de mortel goed aan de steen hecht. Bij de hechting aan steen komt er een dubbele mechanische hechting tussen de mortel en de steen tot stand.

De eerste vorm van mechanische hechting of verankering aan het ruwe steen­oppervlak ontstaat, wanneer de mortel voldoende plastisch is en bovendien voldoen­
Kalkboek
de bindmiddel bevat, zodat een dun laagje bindmiddel het reliëf van de steen kan volgen. Teneinde dit laagje te kunnen vormen mag de mortel niet te droog zijn. Anderzijds heeft een te natte mortel een te geringe cohesie, waardoor de stenen als het ware op de mortel gaan drijven. Ook dat komt de samenhang van de constructie niet ten goede, temeer daar in dit geval bovendien te veel drogingskrimp kan optreden.

De tweede vorm mechanische hechting op het grensvlak tussen mortel en steen ontstaat wanneer de steen op vele plaatsen kalksuspensie uit de mortel opzuigt. Na carbonatatie is er hierdoor kalk aanwezig ter weerszijden van dat grensvlak. Door deze verankerende werking van deze kalk wordt gesproken over het ontstaan van kalkankertjes. Omdat kalksuspensie een mengsel is van vrije kalk en water mag het opzuigen van deze suspensie door de steen niet te sterk zijn. Anders zal hierdoor het voor de verharding van de mortel noodzakelijke water ontbreken en de mortel in de nabijheid van dit grensvlak verbranden. Dit heeft een slechte samenhang van de mortel tot gevolg en daardoor een slechte hechting van de steen aan de mortel. Wanneer de mortel tevens puzzolanen bevat, zullen bij de reactie van de vrije kalk met de puzzolanen naaldvormige kristallen ontstaan. Die kristallen kunnen ook in de kalkankertjes aanwezig zijn, waardoor zij een positieve bijdrage leveren aan de hechting van de mortel op de steen.

Uit het bovenstaande blijkt, dat voordat wordt begonnen met de verwerking van specie en baksteen, proefondervindelijk moet worden vastgesteld wat de beste consistentie is van de specie, afhankelijk van de hoeveelheid toegevoegd water. Die hoeveelheid moet optimaal zijn voor de verharding van het desbetreffende type mortel. Uiteraard moet daarbij rekening worden gehouden met de vereiste verwerkbaarheid zodat de metselaar goed werk kan afleveren. Het capillaire gedrag van de te verwerken stenen is hierbij de meest bepalende factor. Een zachtgebakken (poreuze) steen heeft een veel sterkere capillaire werking dan een hardgebakken klinker en zal dus meer water opzuigen. Beschikbaarheid van voldoende water in de mortel en goed voorbevochtigen van de baksteen is daarom nog belangrijker dan bij hardgebakken stenen!

Doordat vette kalkmortels over het algemeen moeilijker zijn te verwerken dan even vette cementgebonden mortels, hebben metselaars die niet vaak met kalkmortel werken de neiging de kalkspecie te nat te maken. Deze werkwijze komt de consolidatie van het te realiseren werk echter niet ten goede.

Ter voorkoming van het aanmaken van niet optimaal viskeuze kalkspecies, is het noodzakelijk per werk een vast recept op te stellen, waarin tevens de toe te voegen hoeveelheid water wordt opgenomen. Hierbij kan rekening gehouden worden met de ervaring van goede vaklui die het gebruik van kalkmortel kennen. Van het optimale watergehalte mag niet worden afgeweken, behalve wanneer daar goede...
redenen voor zijn, zoals veranderende buitentemperaturen en dergelijke. Alleen wanneer de mortel met de juiste hoeveelheid water is aangemaakt en de stenen op de juiste manier zijn voorbevochtigd ontstaat een goede mechanische hechting van de mortel op het ruwe steenoppervlak en kunnen kalkankertjes zich optimaal ontwikkelen.

8 Besluit

In dit hoofdstuk hebben we, gebruikmakend van onze hedendaagse wetenschappelijke kennis en van historische werkwijzen die we konden afleiden uit afbeeldingen of teksten, getracht een beeld te geven hoe in de loop der tijden kalksteen of schelpen werden omgezet tot kalk om te worden aangewend in kalkmortel. Hiermee zijn tevens heel wat begrippen en praktijken die te maken hebben met de toepassing van kalk voor het metselen aan de orde geweest en verduidelijkt.

Om tot een duurzaam gebruik van kalk in de restauratiepraktijk te komen, moeten we echter eerst nog achterhalen hoe kalkmortel verweert, wat er allemaal kan misgaan wanneer kalkmortel onvakkundig wordt toegepast of verwerkt of onterecht wordt vervangen door een ander bindmiddel. Dit is aan de orde in het volgende hoofdstuk, waarin naar de degradatie van kalkmortel wordt gekeken.
1 Inleiding

Het doel van dit hoofdstuk is inzicht te geven in de factoren die van invloed zijn op de wijze waarop degradatie van materialen – en met name van mortels in monumenten – optreedt. Dit inzicht stelt ons in staat om mogelijke problemen van die materialen te voorzien en biedt informatie voor een goede mortelkeuze en een goede restauratiepraktijk. Wanneer we van dit inzicht geen gebruik zouden maken, is er een gerede kans dat na een restauratie voortijdige vervanging of reparatie in het verschiet ligt.

Het kan bij degradatie zowel gaan om een langzame achteruitgang door *de tand des tijds*, als om een meer abrupt optredende vorm van schade. Omgevingsinvloeden kunnen hierbij een belangrijke rol spelen. Daarom worden die omgevingsinvloeden hier uitvoerig behandeld. Ook reparatiematerialen (dat wil zeggen de bij restauratie gebruikte mortels) zelf kunnen onder bepaalde omstandigheden bijdragen tot een versnelde achteruitgang van de conditie van een monumentale constructie. We spreken in zo’n geval van een (technisch) niet compatibele mortel. (Een mortel kan ook esthetisch al dan niet compatibel zijn.) We gaan in op de meest voorkomende vormen van degradatie van mortels in monumenten. Het onderzoek dat nodig is om de oorzaak van de opgetreden schade te achterhalen wordt direct daaraan gekoppeld.

Overigens wordt benadrukt dat vergelijkbare schadebeelden zowel bij kalkgebonden als bij cementgebonden mortels kunnen optreden en dat er omstandigheden zijn waaronder kalkmortels zich beter gedragen en omstandigheden waaronder cementmortels het beter doen. Bijzondere omstandigheden doen zich voor waar beide typen bij een restauratie samen zijn gebracht. Dit kan schade als gevolg van (onderlinge) incompatibiliteit tot gevolg hebben. Ook daarvan zullen voorbeelden aan de orde komen. Overigens is een voegmortel, die qua samenstelling precies overeenkomt met de oorspronkelijke (doorstrijk)mortel niet per definitie de meest compatibele.
De diagnose van de schade, of in meer algemene zin het door middel van onderzoek vaststellen of enig degradatieproces gaande is, wordt in de praktijk vaak vergeten. Toch is die diagnose buitengewoon belangrijk, om een duurzame restauratie te kunnen garanderen. Een dergelijke nalatigheid kan ook bij de toepassing van reparatiemortels leiden tot ernstige compatibiliteitsproblemen. Bij de hierna behandelde voorbeelden wordt op basis van het geconstateerde degradatiebeeld en het daarmee verbonden degradatieproces, de relatie gelegd naar de meest adequate reparatiemethode.

De benadering, die hier wordt gevolgd heeft tot doel een beter inzicht te bieden in de oorzaken van incompatibiliteit en een aanzet te geven tot richtlijnen voor compatibele reparatiemortels, uitgaande van de specifieke condities van het individuele monument. Dit hoofdstuk hangt nauw samen met § 3 *Kalkmortel voor de hedendaagse praktijk* in hoofdstuk 5.

2 Bepalende factoren voor degradatieprocessen

De belangrijkste factoren die van invloed zijn op degradatieprocessen liggen op het gebied van omgeving, materialen, ontwerp, vakmanschap van de uitvoering en het onderhoud.

Tot de omgevingsfactoren behoren bijvoorbeeld het vochtaanbod, het zoutaanbod, luchtverontreiniging, temperatuursinvloeden, dynamische belastingen en zetting van de bodem.

Bij het vochtaanbod denken we onder andere aan regenwater, vochttoetreding uit de bodem of uit het oppervlaktewater en overstromingen. Het zoutaanbod is meestal afkomstig uit de bodem of het grondwater of vanuit het gebruik (stallen, zoutopslag). Daarnaast komt het zout in metselwerkconstructies veelvuldig aanwaaien via de lucht (aërosol), is het opgenomen bij overstromingen of aangevoerd als dooizout voor gladheidbestrijding. Temperatuurinvloeden betreffen voornamelijk de temperatuurvariaties en de uiterste temperaturen, dynamische belastingen naast aardbevingen en wind ook verkeer en andere oorzaken van trillingen.

Bij de materiaalfactoren gaat het vooral om de samenstelling van de mortel (aard en hoeveelheid van het bindmiddel, korrelgrootteverdeling van het zand), de eigenschappen van steen en mortel in hun onderlinge samenhang (porositeit, capillaire transportmogelijkheden, hechting, mechanische sterkte) en de aanwezigheid

159 Het zoutaanbod uit de bodem kan zeer hoog zijn. Zie onder andere tabel 1 in Witteman 2002 (p. 6).
van zouten in het materiaal (bijvoorbeeld in baksteen). Deze zouten kunnen vanaf het begin aanwezig zijn maar ze kunnen ook zijn gebracht bij eerdere ingrepen.160

Als ontwerpfactoren kunnen worden onderscheiden de detaillering van het gebouw, het constructief (statisch) ontwerp van het gebouw, de keuze voor de combinatie van materialen en de keuze van reparatiemethoden en -materialen.

Factoren vanuit vakmanschap en uitvoering zijn de (slechte) kwaliteit van de uitvoering, gevolgen van het mengen van mortels op de bouwplaats, de heersende drogings- en verhardingscondities, de bescherming van het verse metselwerk en het verlies aan traditioneel vakmanschap. De factoren gerelateerd aan onderhoud tenslotte zijn het al dan niet vermijden van waterpenetratie bij schade aan watervoe rende elementen, de (snelle) reparatie van schade aan voegwerk en reinigingsoperaties (verkeerde wijze van reinigen maar soms ook het achterwege blijven van reinigen).

De omgevingsfactoren oefenen in nauwe samenhang met materiaalfactoren invloed uit op het verloop van degradatieprocessen. Oriëntatie en daarnaast ontwerp, uitvoering en onderhoud bepalen in belangrijke mate vochtaanbod en droging. In tabel 7 is een overzicht gegeven van de factoren, die schade aan mortel kunnen veroorzaken.

2.1 Processen

Alle bouwmaterialen zijn in meerdere of mindere mate onderhevig aan verweringsprocessen. Deze zijn tot op zekere hoogte natuurlijke processen, waarop door de mens of door menselijke activiteiten tot op zekere hoogte invloed wordt uitgeoefend. In plaats van \textit{verwering}, dat gevoelsmatig sterk gerelateerd is aan natuurlijke vormen van aantasting (door regen, water, zon, wind), kunnen we, wanneer we de \textit{verwering} iets ruimer willen bezien, beter spreken van degradatieprocessen.

Degradatieprocessen oefenen een belasting uit (fysisch, chemisch, fysisch-chemisch, mechanisch) op bouwmaterialen. Die belasting leidt na een bepaalde tijd tot aantasting of schade en is mede afhankelijk van de heersende omstandigheden.

160 Bij de consolidatie van het grafmonument van Willem van Oranje in Delft bleek dat de voornaamste oorzaak van de zoutschade was gelegen in de vroeg zeventiende-eeuwse mortel, die zeer veel zout bevatte. Gevelreiniging en het \textit{afzuren} na voegwerkherstel zijn bekende oorzaken van latere zoutschade. Voor het inboeten worden soms oude, uit afbraak afkomstige stenen gebruikt. Het komt voor dat die met zoutzuur zijn ontdaan van mortelresten.
Tabel 7

Overzicht van de factoren die schade aan mortel kunnen veroorzaken

<table>
<thead>
<tr>
<th>Omgeving</th>
<th>Vochtaanbod</th>
<th>regenwater</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>vochttoetreding uit de bodem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vochttoetreding uit het oppervlaktewater</td>
</tr>
<tr>
<td></td>
<td></td>
<td>overstromingen</td>
</tr>
<tr>
<td>Zoutaanbod</td>
<td>uit de bodem of het grondwater</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>vanuit het gebruik (stallen, zoutopslag)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>via de lucht (aërosol)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uit overstromingen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uit bacteriële omzetting (bijvoorbeeld nitrificerende bacteriën)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>via dooizouten</td>
</tr>
<tr>
<td>Luchtverontreiniging</td>
<td>droge depositie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>natte depositie</td>
</tr>
<tr>
<td>Temperatuurfactoren</td>
<td>temperatuurvariaties</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>uiterste temperatures</td>
</tr>
<tr>
<td>Dynamische belastingen</td>
<td>aardbevingen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wind</td>
</tr>
<tr>
<td></td>
<td></td>
<td>verkeer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>trillingen</td>
</tr>
<tr>
<td>Zettingen</td>
<td>vervorming</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>verlies van ondersteuning</td>
</tr>
<tr>
<td>Materialen</td>
<td>Mortelsamenstelling</td>
<td>aard van het bindmiddel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hoeveelheid van het bindmiddel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>korrelgrootteverdeling van het zand</td>
</tr>
<tr>
<td>Eigenschappen steen en mortar</td>
<td>porositeit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>capillaire transportmogelijkheden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hechting</td>
</tr>
<tr>
<td>Aanwezigheid van zouten in het materiaal</td>
<td>sulfaten</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>chloriden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nitraten</td>
</tr>
<tr>
<td>Ontwerp</td>
<td>Detaillering van het gebouw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constructief (statisch) ontwerp van het gebouw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keuze van de combinatie van materialen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keuze van reparatiemethoden en -materialen</td>
<td></td>
</tr>
<tr>
<td>Uitvoering</td>
<td>Kwaliteit uitvoering</td>
<td>mengen van mortels op de bouwplaats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>drogings- en verhardingscondities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bescherming van het verse metselwerk</td>
</tr>
<tr>
<td></td>
<td>Verlies aan traditioneel vakmanschap</td>
<td></td>
</tr>
<tr>
<td>Onderhoud</td>
<td>Waterpenetratie bij schade aan watervoerende elementen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Snelle) reparatie van schade aan voegwerk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reinigingsoperaties</td>
<td></td>
</tr>
</tbody>
</table>
Degradatie is het min of meer geleidelijk toenemen van schade dan wel afnemen van kwaliteit.

Schade kan gedefinieerd worden als een op zeker moment merkbare vorm van achteruitgang van het bouwmateriaal (variërend van bijvoorbeeld verkleuring, tot compleet verlies aan samenhang). Schade kan dus zowel op esthetische als op functionele zaken betrekking hebben. Overigens, uiteindelijk zal elk materiaal vergaan, zelfs wanneer het onder optimale omstandigheden wordt bewaard. Van belang is echter vooral het tijdsbestek waarin het vergaan plaats zal vinden: binnen enkele jaren schade ondervinden is uiteraard een proces van een geheel andere orde dan binnen enkele eeuwen of na vele millennia schade vertonen. We beperken ons hier tot processen die relatief snel verlopen, tot schade die als relevant wordt ervaren.

Een degradatieproces is overigens niet uitsluitend afhankelijk van de hoofdoozaak van de schade. Er is doorgaans sprake van een aantal condities, die bepalen of er al dan niet schade zal ontstaan. Zo zal het voor komen van vries-dooi wisselingen alléén niet voldoende zijn om tot schade te leiden. Het bouwmateriaal moet ook gevoelig zijn voor vorst en bovendien op het juiste moment in hoge mate met vocht verzadigd zijn, wil er ook daadwerkelijk schade als gevolg van die vries-dooi wisselingen ontstaan.

We zullen degradatieprocessen benoemen op basis van omgevingsfactoren en mechanische acties. Het gaat dan om de processen die zijn weergegeven in tabel 8.

Hierna zullen we de verschillende processen aan de hand van voorbeelden behandelen. Daarbij schenken we aandacht aan het schadetype, de oorzaak van de schade en de andere essentiële factoren.

<table>
<thead>
<tr>
<th>Tabel 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overzicht degradatieprocessen</td>
</tr>
<tr>
<td>Vries-dooi wisselingen</td>
</tr>
<tr>
<td>Zoutkristallisatie</td>
</tr>
<tr>
<td>Chemische reacties leidend tot het ontstaan van verbindingen met een groter volume (inclusief de werking van chemische luchtverontreinigingscomponenten, respectievelijk droge en natte depositie met inbegrip van het afzetten van in oplossing gegaan bindmiddel)</td>
</tr>
<tr>
<td>Waterpenetratie leidend tot uitloging</td>
</tr>
<tr>
<td>Wind- en watererosie</td>
</tr>
<tr>
<td>Hygroskopische vochtopenname</td>
</tr>
<tr>
<td>Biologische aantasting (biodegradatie)</td>
</tr>
<tr>
<td>Uitzetting en krimp, door variatie in temperatuur of vochtgehalte</td>
</tr>
<tr>
<td>Deformatie en scheurvorming (statische of dynamische belastingen, zettingen)</td>
</tr>
</tbody>
</table>
Tabel 9

<table>
<thead>
<tr>
<th>Overzicht van de voorbeelden van schadeprocessen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorstschade</td>
</tr>
<tr>
<td>Zuivere zoutkristallisatie (efflorescentie en crypto-florescentie)</td>
</tr>
<tr>
<td>Vorming van verbindingen met een groter volume (bijvoorbeeld thaumaisiet, Friedels zout en ettringiet)</td>
</tr>
<tr>
<td>Gipsvorming, zwarte korsten, openbarsten van voegen</td>
</tr>
<tr>
<td>Korstvorming door uitloging van mortelbestanddelen (encrustatie)</td>
</tr>
<tr>
<td>Uitspoeling, erosie</td>
</tr>
<tr>
<td>Zwakke mortel (vroegtijdige verwering)</td>
</tr>
<tr>
<td>Effect van zeezouten op kalkmortel</td>
</tr>
<tr>
<td>Aantasting door nitraten (KNO₃): vochtplekken door hygroscopiciteit</td>
</tr>
<tr>
<td>Vervorming</td>
</tr>
<tr>
<td>Biologische groei</td>
</tr>
</tbody>
</table>

Omgevingsinvloeden op gemetselde constructies (met kalkmortel) worden daarbij behandeld in samenhang met materiaalgebonden factoren. Steeds is het de bedoeling om door adequate maatregelen en door de keuze van een (onder de aangetroffen omstandigheden) compatibele mortel aantasting in de toekomst zoveel mogelijk te voorkomen. De voorbeelden die aan de orde komen, zijn opgenomen in tabel 9.

Alvorens op deze voorbeelden in te gaan zullen we eerst enkele bijzondere eigenschappen van kalkmortels bespreken, waardoor deze mortels zich in bepaalde omstandigheden (bij bepaalde degradatieprocessen) in gunstige zin onderscheiden.

Kalkgebonden mortels bezitten een hoge vervormingscapaciteit. In § 3.1 worden enkele voorbeelden gegeven. Constructies gemetseld met zuivere kalkmortels kunnen bepaalde vervormingen door zettingen en dergelijke opnemen. Wanneer deze vervormingen langzaam verlopen zullen daarbij meestal geen scheuren ontstaan.

Bij belasting van metselwerk ontstaat in de mortelvoeg een gecombineerde verticale en horizontale drukbelasting. De mortel is over het algemeen veel meer vervormbaar dan de omliggende stenen en heeft daarom de neiging om, als het ware, tussen de stenen uitgedrukt te worden. De steen wordt daardoor onder trekspanningen belast. Bij overbelasting van het metselwerk worden daardoor verticale scheuren gevormd, die vanuit de bakstenen ontstaan.

De triaxiale drukspanning, waarmee de mortel in de voeg belast wordt, zorgt voor een belangrijke verandering in het materiaalgedrag van de mortel. Enerzijds zal onder invloed van de horizontale steundruk de verticale druksterkte van de mortel sterk toenemen. Anderzijds kan, afhankelijk van de mechanische kenmerken
van de stenen en de mortel, een overgang plaatsvinden in het gedrag van de mortel, van een bros naar een zeer plastisch vervormbaar materiaal. Dit speelt des te meer een rol naarmate de horizontale steundruk in de mortel in verhouding tot de toege- nomen verticale druksterkte toeneemt. Hierbij is in de eerste plaats de treksterkte van de steen bepalend, hoewel ook de druksterkte van de mortel van invloed is.

De mogelijkheid van de kalkmortel om, zelfs in een uitgeharde toestand, zich in het metselwerk te gedragen als een plastisch zeer vervormbaar materiaal, maakt dat het metselwerk relatif gemakkelijk opgelegde vervorming kan opnemen als gevolg van zettingen of bewegingen in bogen of gewelven. De hogere vervormbaarheid en de lagere sterkte van een nog niet uitgeharde luchthardende kalkmortel versterkt dit fenomeen, waardoor dergelijk metselwerk in hoge mate vervormingen kan doorstaan zonder te scheuren.161

Figuur 11
Vervorming van de bogenrij van het voormalige koetsgebouw in de boerderij van de Abdij van 't Park te Heverlee.

Met de uitharding van de luchthardende kalkmortel door carbonatatie wordt de mortel sterker en stijver en verliest het metselwerk hierdoor een deel van zijn vervormbaarheid. Aangezien het uithardingsproces voor dikke muren relatief traag

verloopt (de carbonatiediepte schrijdt voort met de vierkantswortel van de tijd) wil dit zeggen dat voor gotische constructies met muren van ongeveer negentig centimeter dikte, de carbonatatie meer dan vijfhonderd jaar duurt. Zolang behoudt het metselwerk in de muurkern een zeer grote vervormbaarheid, terwijl aan de buitenzijde stijvere zones in het metselwerk ontstaan. De toepassing van kalkmortels verleent evenwel, zelfs na uitharding, een opmerkelijke flexibiliteit en vervormbaarheid aan het metselwerk.\(^{162}\)

Daarnaast bezitten kalkmortels in zekere mate een zelfherstellend vermogen. Daaronder wordt verstaan dat kleine scheurtjes, als gevolg van herkristallisatie weer gevuld kunnen worden (zie figuur 12). Overigens dient men zich hiervan geen overdreven voorstellingen te maken. Een vergelijkende studie tussen kalkcementmortel en cementmortel heeft aan het licht gebracht dat ook cementmortels een zekere zelfhelende eigenschap hebben. Het grote verschil met kalkmortel is evenwel dat deze eigenschap alleen bestaat als deze hydraulische mortel zeer vochtig wordt gehouden, terwijl dat voor kalkmortel en kalkcementmortel ook geldt in meer normale atmosferische omstandigheden.\(^{163}\)

De hoge vervormingscapaciteit is overigens een eigenschap die met name voor zuivere kalkmortels geldt. Voor bastaardmortels geldt die eigenschap in veel mindere mate.

Overigens dient men bij de hoge vervormingscapaciteit van metselwerk met kalkmortels versus de lage vervormingscapaciteit van modern metselwerk met cementmortels te bedenken, dat het om een eigenschap van de constructie als totaliteit gaat. Een klassieke massieve dikke muur gemetseld met luchtkalkmortel kan veel vervormingen opnemen en het stellen zonder dilatatievoegen. Een modern halfsteens buitenspouwblad, gemetseld met een portlandcementmortel kan het, zelfs wanneer deze op een stijve en nauwelijks vervormende betonconstructie rust, niet stellen zonder (veel) dilatatievoegen, omdat deze anders alleen al ten gevolge van temperatuurswisselingen op veel plaatsen zal scheuren. Tussen deze beide uitersten ligt een breed scala aan verschillende constructies met elk hun eigen karakteristiek met betrekking tot de mogelijkheid om vervormingen op te nemen.

\(^{162}\) \textit{Van Balen 1991.}

\(^{163}\) \textit{Van Balen 1991.}
2.2 De prominente rol van water bij degradatie

Voorafgaand aan de behandeling van degradatie van mortels en metselwerk is het goed om stil te staan bij de belangrijkste factor in degradatieprocessen, de rol van water. In de twaalf voorbeelden van § 3 lijkt alleen het eerste proces (vervorming) geen directe relatie met water te hebben. Lijkt, want er wordt gewezen op het zelf-herstellend vermogen van kalkmortels. Daarvan kan echter alleen sprake zijn indien er een zekere hoeveelheid water aanwezig is.

De vochtbuishouding in een gevel is van grote invloed op degradatieprocessen. Bij vrijwel alle degradatieprocessen is het daarom van belang om eerst die vochtbuishouding te begrijpen. Een belangrijke vraag bij de diagnose van schade is steeds, waar het water dat dit proces mogelijk maakt vandaan komt. In een aantal gevallen is het opheffen van het wateraanbod een goede manier om verder verval tegen te gaan.

Het ideale (bijna)evenwicht van een gevel

Wanneer het bouwvocht verdwenen is, verkeert een gezonde gevel bijna in een evenwichtssituatie. Hij bevat minder water dan globaal 2% van de massa van het metselwerk en dat water zit alleen in kleine poriën (capillair water) en als een dun laagje langs de wanden van grotere poriën. Door de muur kan (traag) waterdamp stromen (waterdamp diffusie). Die vochtstroom is te beschouwen als een haasje-overspel, waarbij watermoleculen opgenomen worden in en weer loskomen van het water in de poriën, waardoor er per saldo sprake is van een geringe stroming. Bij dit haasje-overspel worden geen oplosbare stoffen getransporteerd, dus schadeprocessen als gevolg van zouten of door het verlies aan (oplosbare) bindmiddelen spelen daarbij geen rol.

Aan de buitenzijde bevindt zich na een regenbui meer water in de poriën. Zodra het weer droog is wordt dat vocht weer snel afgevoerd door de warmte van de zon en vooral door de wind die langs het geveloppervlak strijkt. Daarbij wordt vochtverlies aan het oppervlak aangevuld door water dat door de poriën naar het oppervlak stroomt. Op een bepaald moment wordt dit vocht aanbod echter te klein en ontstaat er een scheiding tussen een gedroogd deel direct aan het oppervlak en het metselwerk daarachter, dat nog wat natter is. Het drogen gaat dan veel trager omdat het water de afstand naar het muuroppervlak in dampvorm (haasje-overspel) moet overbruggen. Bij het drogen na een regenbui is er dus eerst sprake van een snelle droging (transport van vloeibaar water) en daarna van langzame droging (damptransport).

Aan het oppervlak fluctueert het vochtgehalte afhankelijk van de weersomstandigheden. Door de jaren heen zal het vochtgehalte zich echter tussen ongeveer
constante grenzen bevinden. Het lijkt dus alsof de gevel zich in een evenwicht bevindt, waarin gedurende eeuwen geen verandering zal optreden. Dat is niet helemaal het geval, want bij het oppervlak vindt steeds wat transport van vloeibaar water plaats. Daarmee kunnen stoffen uit de constructie worden getransporteerd, zoals calciumhydroxide uit de mortel en andere (oplosbare) stoffen. De snelheid van dit proces is afhankelijk van de materiaalsoort en de mate belasting van de gevel. In de loop van (vaak zeer vele) jaren kan door uitloging achter het oppervlak een verzwakte zone ontstaan (in de mortel en soms ook in natuursteen). De stoffen die getransporteerd worden blijven voor een deel op of nabij het oppervlak achter. Ze kunnen tegen de pori Whether neerslaan en plaatselijk het poriesysteem vernauwen.

Ook van buiten komen allerlei vreemde stoffen op en in het oppervlak terecht, zoals vlieugas, roetdeeltjes, stof, schimmel- en algesporen en bacteriën. Door de samenkomst van al deze stoffen kunnen er op het oppervlak tal van verbindingen ontstaan en kunnen er organismen leven die uiteindelijk als organische afbraakproducten achter zullen blijven.

Gevels hebben van oorsprong aan de buitenzijde vaak al een iets dichtere zone. Bij het vormen van de baksteen worden poriën aan de buitenzijde een klein beetje dichtgestreken en bij bakken zal de steen daar mogelijk iets meer sinteren dan in het inwendige van de steen. Bij het afstrijken van een voeg wordt er wat bindmiddel naar de oppervlakte geduwd. Door de opeenvolgende bevochtiging en droging van kalksteen of mergel (en sommigen beweren eveneens als gevolg van het verdampen van groevewater), ontstaat ook zo’n verdicht laagje aan de oppervlakte van natuursteen waarachter een zone met een lager bindmiddelgehalte wordt aangetroffen. In de loop der tijd zal die zone door toevoer van stoffen uit de gevel en uit de lucht steeds dichter worden.

Die wat dichtere buitenhuid van een gevel schijnt gunstig te werken, omdat deze de vochtopname enigszins afremt en maar in mindere mate de droging belemmert. Ervaring leert dat een niet gereinigde gevel, waarbij dit laagje dus onaangetast is, vaak duurzamer is dan een gereinigde. Maar er spelen teveel andere factoren een rol, om zondermeer deze conclusie te kunnen trekken.

Zeker naar mate de verdichting van de buitenhuid toeneemt, zullen zich processen gaan afspelen waardoor de buitenhuid los kan komen van de ondergrond. Daarbij spelen toenemende verschillen in thermische en hygrische uitzetting een rol, maar mogelijk ook de vorming van zoutkristallen of van aantastende stoffen.

Een gevel wordt nooit egaal door regen, wind, zonbestraling en dergelijke belast; integendeel, er is juist sprake van grote verschillen. Het loskomen van de buitenhuid zal zich daarom eerst plaatselijk manifesteren. We kunnen doorgaans, zolang er geen schade zichtbaar is, het beste niets aan de gevel doen. Eerst nadat de
Duurzaamheid en verwerking

buitenhuid plaatselijk wordt afgestoten, moet een behandeling (bijvoorbeeld een voorzichtige reiniging) overwogen worden. Daarmee nemen we echter wel afscheid van het ideale bijna-evenwicht waarin de gevel zich bevond. Het vinden van een nieuw evenwicht (met een compatibele ingreep) is geenszins eenvoudig.

Een gevel die lijdt aan de in § 3 behandelde degradatieverschijnselen, verkeert niet in (bijna)evenwicht. Het reparatieadvies geeft de weg naar een nieuwe evenwichtssituatie aan. Daarbij stuiten we soms op dilemma’s. Als voorbeeld zal hier iets over het effect van het hydrofoberen worden gezegd, omdat deze techniek haaks staat op het geschetste beeld van het bijna-evenwicht.

Hydrofoberen

Soms helpen traditionele ambachtelijke bouwtechnieken niet of onvoldoende om een probleem op te lossen. Dan kan het behandelen van de gevel met een waterafstotend preparaat uitkomst bieden. Aan die behandeling kleven echter tal van gevaren, die men niet mag onderschatten. Dat gebeurt in de praktijk nogal eens. Uit een recent onderzoek naar vochtproblemen van molens bleek bijvoorbeeld dat hydrofoberen daar vaker tot meer dan tot minder vochtproblemen heeft geleid.

Wanneer wordt voldaan aan alle eisen die daarbij aan een gevel gesteld moeten worden, kan hydrofoberen overwogen worden. Gevolg van een behandeling zal echter altijd zijn, dat ook het drooggedrag van de gevel zal veranderen. Is er bij een onbehandelde gevel eerst sprake van een snelle droging (transport van vloeibaar water) en daarna van langzame droging (damptransport), door de waterafstotende behandeling verliest de gevel het vermogen om volgens de eerste (snelle) vorm te drogen. Transport van vloeibaar water wordt door het waterafstotende preparaat tegengegaan. Zolang de gevel in een goede conditie verkeert en zich geen calamiteiten voordoen, zal dit niet tot problemen leiden. Maar mocht onverhoopt een keer veel water achter de waterafstotende zone terechtkomen, dan zal blijken

165 Groot 2002, p. 84-5.

166 Weinig zout, geen scheuren of scheurtjes die niet overbrugd kunnen worden, goed en goed gehecht voegwerk, nauwelijks optrekkend vocht, geen kans op lekkages of watertoetreding van elders, goede, niet lekkende aansluitingen op andere onderdelen enz.

168 Hierbij is te denken aan overstromingen (water zal door de hydrostatische druk door de gehydrofoberde zone worden geperst), het ontstaan van scheurtjes (lekken in de regenjas, waarachter zich behoorlijke hoeveelheden water kunnen opzetten, aanbrengen van nieuw voegwerk (voegmortel hecht slecht en elke aansluiting van voeg op steen is een potentieel lek), calamiteiten als een overstro-
dat het vermogen van de gevel om dergelijke gebeurtenissen te doorstaan drastisch is afgenomen. Wordt de gevel om de een of andere reden achter de gehydrofobeerde zone een keer echt nat, dan blijft hij daar ook lang nat, met als gevolg een toegenomen kans op bijvoorbeeld vorstschade, zoutschade en uitbloei en de mogelijkheid dat het vochtprobleem zich aan de binnenzijde gaat manifesteren.\footnote{169}

Dat men moet opletten met het verstoren van het eerder genoemde dynamisch evenwicht, blijkt ook uit de voorbeelden hierna. De schade die ontstond door de vervanging van kalkvoegen door cementvoegen (§ 3.2 en § 3.3) illustreert dat.

3 Voorbeelden

In deze paragraaf gaan we in op degradatie van kalkmortels en degradatie van constructies in monumenten, die oorspronkelijk zijn gebouwd met kalkmortel. We schenken aandacht aan min of meer natuurlijke verweringsprocessen en tevens aan degradatie, die ontstaat door de incompatibiliteit van bij restauratie gebruikte nieuwe mortels.

De voorbeelden worden uitvoerig beschreven. De benadering van de problematiek is gebaseerd op de wijze van redeneren van een deskundige op het gebied van de conservering. Dat wil zeggen dat de oorzaken van de opgetreden degradatie worden benaderd op een gestructureerde, logische wijze. Hoewel het wellicht overbodig lijkt, wordt nog eens benadrukt dat het bijzonder belangrijk is zowel de invloed van omgevingsfactoren als van het type constructie in de overwegingen te betrekken.

Bij de voorbeelden worden ook de onderzoekstechnieken genoemd, die geschikt worden geacht om tot een juiste diagnose te komen. Tenslotte worden aanwijzingen gegeven hoe met de schade en de reparatie of restauratie om kan worden gegaan.

3.1 Vervorming van metselwerk met kalkmortel

Kalkgebonden mortels bezitten een hoge vervormingscapaciteit. Constructies die zijn gemetseld met zuivere kalkmortels kunnen bepaalde vervormingen opnemen, soms zonder dat daarbij zichtbare scheuren optreden.

\footnote{Zie ook: Van Bommel 2003 II.}
Daarnaast bezitten kalkmortels in zekere mate een zelfherstellend vermogen. Daaronder wordt verstaan dat kleine scheurtjes, als gevolg van herkristallisatie weer gevuld kunnen worden (zie figuur 12170).

Schadebeeld

De bedoelde vervorming kan bijvoorbeeld verband houden met verzakkingsverschijnselen (fundering), waardoor muren een verticale golving vertonen of gemetselde pijlers uit het lood gaan staan. Het gunstige gedrag van kalkmortels komt daarbij goed tot uiting. Eigenlijk zouden we hier niet van *schadebeeld* hoeven spreken.

Onderzoek

Wanneer de vervormingen geleidelijk optreden, ontstaan vaak geen zichtbare scheuren. Treden die bij dit type metselwerk toch op dan is dat in het algemeen een teken van een plotseling opgetreden vervorming, die onderzoek en mogelijk ingrijpen vereist.

In het geval van langzaam voortschrijdende vervormingen is het volgen van het proces (monitoren) eveneens verstandig, om uiteindelijk calamiteiten te voorkomen.

Oorzaak

De oorzaak van dergelijke vervormingen ligt in het algemeen in de kwaliteit van de bodem of de fundering. De reden dat vaak geen zichtbare scheuren optreden, is gelegen in de relatief grote vervormingscapaciteit van de kalkmortel. Tevens kunnen lokale spanningsconcentraties in de structuur de aanleiding vormen tot lokale of globale vervormingen van de metselwerkstructuur.

Reparatieadvies

Een reparatieadvies is in dit geval niet aan de orde. Onder omstandigheden kan het wel verstandig zijn de vervormingen nauwgezet in de loop van de tijd te volgen (monitoren). Dit geldt zeker indien in de stenen talloze fijne verticale haarscheurtjes zijn waar te nemen. Een langzaamaan voortschrijdende vervorming van de structuur kan in dergelijke omstandigheden een voorbode zijn van het lokaal bezwijken van het metselwerk en eventueel van de gehele constructie, indien het een dragend element betreft.

170 Een zogenaamde PFM-foto. Bij PFM gaat het om Polarisatie en Fluorescentie Microscopie aan zogenaamde dunslijppreparaten, zie ook hoofdstuk 5.
3.2 Vorstschade

Vorstschade aan jonge kalkmortel is een redelijk bekend verschijnsel. Een kalkmortel heeft meer tijd nodig dan een cementmortel om voldoende sterkte te ontwikkelen om de combinatie van vocht en vorst te kunnen doorstaan. In het algemeen kan gesteld worden dat het metselen met kalkmortels aan seizoenen gebonden dient te zijn. Voor luchthardende mortels geldt, dat enige maanden voor de mogelijke vorstperiode deze mortel niet meer moet worden verwerkt, tenzij voor een zeer goede bescherming tegen nat worden (en zolang de mortel nog niet droog is tegen bevriezen) wordt gezorgd.

Dat geldt in wat mindere mate ook voor een hydraulische kalkmortel, die de eerste weken vorstvrij dient te blijven.

Dat vorstschade ook aan oude kalkmortels kan voorkomen is een verschijnsel dat pas sinds enkele jaren duidelijk begint te worden. Wat daarvan de oorzaken zijn en welke andere factoren daarbij een rol spelen wordt momenteel nog onderzocht. Hierna wordt een voorbeeld van zo’n schadegeval getoond.

Schadebeeld

Een typische kenmerk van deze vorm van schade kan zijn dat het voegwerk los komt en vaak ook dat de metselmortel daarachter een laagvormige opdeling laat zien, evenwijdig aan de onderzijde van de baksteen. Daarnaast kan het metselwerk afspatten of bol gaan staan. In het hier behandelde geval gaat het om het torentje van een gevangenismuur (één steen dik gemetseld), waarbij het metselwerk bol staat. Dit bol staan komt alleen voor bij niet te zware muren (een halve of hele steen dik) en is een gevolg van de zwelling van de metselmortel aan de buitenzijde. Het verschijnsel dat een centimeters dikke laag van het metselwerk kan afspatten komen we juist tegen bij zwaardere muren. Overigens moeten we bij dit verschil in schadebeeld rekening houden met de opbouw van het metselwerk. Het verschijnsel van bol staan is ook waargenomen bij zeer dikke vestingmuren, waarbij het echter ging om een halfsteense laag, die door een slecht verband met het achterliggende werk kon loskomen en bol kon gaan staan.

Onderzoek

Het onderzoek begint in een dergelijk geval met een visuele inspectie. Daarbij bleek de schade het grootst op de regenzijde van het gebouw (zuidwest oriëntatie). Bij het boren van enkele kernen uit het bol staande metselwerk werd de schade aan de metselmortel (laagvormige opdeling, zie figuur 15) zichtbaar. Een dergelijk schadebeeld kan worden veroorzaakt door het ontstaan van een verbinding met een groter
volume of door vorstschade aan de metselmortel. In beide gevallen is een hoge vochtbelasting een randvoorwaarde. Om de oorzaak te achterhalen is meer onderzoek nodig. Met behulp van XRD (röntgendiffractie-analyse) konden geen zwelende bestanddelen in de mortel worden vastgesteld. Kernen met onbeschadigde metselmortel uit een minder zwaar geëxposeerd deel van hetzelfde gebouw zijn onderworpen aan vries-dooiproef. Het resultaat van deze proef kwam exact overeen met de schade uit de praktijk. De conclusie, dat het in dit geval om vorstschade gaat, ligt voor de hand.

Om de diagnose te completeren, moet ook nagegaan worden wat de vochtbron is. In figuur 16 is de vochtverdeling over de muurhoogte weergegeven, zoals die is bepaald aan de muur tussen de torentjes.

Opvallend is het zeer hoge vochtgehalte in de mortel en het lage vochtgehalte in de baksteen. Dit is overigens een fenomeen dat bij vorstschade aan metselmortel als regel wordt aangetroffen. Bij de mortel bleek het te gaan om een kalkmortel (analyse uitgevoerd met behulp van Polarisatie en Fluorescentie Microscopie (PFM))

Figuur 12
PFM-foto (afmeting 2,7 x 1,4 mm) van een scheurtje (‘Sc’ verloop diagonaal van rechteronder naar linksboven) in een historische kalkmortel, dat door herkristallisatie weer is opgevuld (in de foto aangegeven met ‘hk’). ‘Z’ = zand en ‘B’ = bindmiddel. © TNO Bouw

Figuur 13
Voorbeelden van vervorming in metselwerk gemetseld met een kalkmortel. Vervorming als gevolg van zetting in een langsgevel (links boven), alsmede detail (links onder). Vervorming in de pijlers van de Nicolaï kerk te Utrecht (rechts). © TNO Bouw
aan zogenaamde dunslijp-preparaten, zie ook hoofdstuk 5) en een dergelijke mortel kenmerkt zich door een groter capillair porievolume dan de steen (de mortel zuigt als het ware de steen droog en houdt het water capillair in zich gevangen). Het vochtverloop wijst op optrekkend vocht, maar eigenlijk alleen in de mortel; het hoge vochtgehalte is verder toe te schrijven aan binnendringend regenwater.

Onderzoek toonde tevens aan dat het euvel zich vooral manifesteerde na het hervoegen van het metselwerk met behulp van een cementgebonden mortel.

Oorzaak

Het proces dat zich hier afspeelt is de vorstinwerking op de (te) natte metselmortel (op kalkbasis). De schade aan de metselmortel (laagvorming) gaat gepaard met volumevergroting, die vooral voorkomt aan de buitenkant van de muur, waar de schade het grootst is. Deze ongelijkmatig over de muurdikte verdeelde schade leidt tot het bol staan van de muur, als gevolg van de drukspanning, die in de buitenste zone wordt opgebouwd. Daarbij wordt ook de voegmortel naar buiten gedrukt. Het bol staan komt overigens alleen voor bij relatief dunne muren (tot één steen dik). Bij dikke muren kan de volumevergroting van de metselmortel (de drukspanning die wordt opgebouwd) leiden tot het afspatten van schollen metselwerk, ter dikte van enige centimeters.

Het langdurig extreem nat blijven van de metselmortel leidt tot een verhoogd risico van vorstschade.

Omdat de schade specifiek ontstond na het hervoegen (met een cementmortel), werd nader onderzoek uitgevoerd om na te gaan of de nieuwe voeg wellicht het drooggedrag van de muur negatief zou kunnen beïnvloeden. Het onderzoek toonde aan dat het drooggedrag inderdaad zodanig verslechterd kan zijn door het aanbrengen van de nieuwe voeg dat daardoor de schade kan worden verklaard. Overigens kunnen ook andere fenomenen, zoals het geleidelijke omzetten van bindmiddel van de metselmortel in gips, aan een bijkomende verzwakking (en daarmee vorstgevoeliger worden) van de metselmortel bijdragen.

Reparatieadvies

Vochttoetreding moet zoveel mogelijk bestreden worden. Omdat de oude metselmortel over een deel van de muurdoorsnede wordt behouden (en daar dus ook de oude kalkmortel gehandhaafd blijft) is er kans op nieuwe schade. De oude metselmortel kan daar namelijk nog steeds kritisch nat worden. In een periode van

171 *Van Hees* 1999.
Duurzaamheid en verwerking

langdurige, aanzienlijke vorst zou ook het nu nog schadefrije deel kunnen bevriezen. Daarom verdient het in dit geval aanbeveling de vochthuishouding van het metselwerk beter te reguleren door vochtbronnen uit te schakelen (bijvoorbeeld door te behandelen tegen optrekkend vocht), snelle droging bij bevochtiging mogelijk te maken en in extreme gevallen (mits uit voorafgaand onderzoek blijkt dat dit mogelijk en nuttig is) te gaan te hydrofoberen (zie ook § 2.2).

Voor wat betreft de mortel kan de volgende denkwijze worden betracht. De nieuwe mortel dient zelf zo duurzaam mogelijk te zijn, zonder schade aan de bestaande materialen te veroorzaken. Een *zelfopofferende* mortel, dat wil zeggen een mortel met een betrekkelijk lage invandige samenhang zou schade aan de steen kunnen voorkomen, omdat de mortel al zou bezwijken voordat de krachten op de steen zouden worden overgebracht. Door de mortel een hoge porositeit te geven, kan bovendien vorstschade aan de nieuwe mortel zelf worden voorkomen. In het kader van een door de Europese Unie gefinancierd project werd de realiseerbaarheid en effectiviteit van dergelijke mortels onderzocht.¹²

Praktisch gezien komt de reparatie dan neer op het diep uitkrabben van de gedegradeerde mortel en het toepassen van een reparatiemortel met veel open ruimte. Goede ervaringen zijn opgedaan met een bastaardmortel met een goed gesorteerd zand (zie § 2.5 in hoofdstuk 3) en een luchtbelvormer. De mortel wordt halfplastisch in een aantal lagen aangebracht en als doorstrijkwerk uitgevoerd. Uiteraard wordt de ontstane vervorming door deze reparatie niet opgeheven.

3.3 Zoutkristallisatie

Problemen rond zoutkristallisatie zijn in monumenten de meest voorkomende oorzaak van schade aan metselwerk. Belangrijke schadelijke zouten zijn sulfaten, chloriden en nitraten. De herkomst van zouten kan liggen in de bodem (grondwater), in de omgeving (bijvoorbeeld de nabijheid van de zee), in het gebruik (bijvoorbeeld als stal, als zoutopslag) of in het bouwmateriaal zelf (baksteen kan afhankelijk van soort klei, baktemperatuur en brandstofsoort meer of minder sulfaten bevatten). Bij de zoutkristallisatie kan het gaan om efflorescentie (zoutuitbloei) aan het materiaalloppervlak, of crypto-florescentie (onder het materiaalloppervlak) en tenslotte ook om omzetting van mortelbestanddelen en zouten tot zwellende verbindingen.

Meestal gaat (zuivere) uitbloei niet gepaard met materiaalverlies en is de schade vooral esthetisch.

¹² *Pointing in historic buildings, Contract ENV4-CT98-706; Van Hees s.a.*
We spreken van crypto-florescentie als de zouten onzichtbaar kristalliseren, dus in het materiaal of ter plaatse van een overgang tussen twee materialen. Dit verschijnsel kan gepaard gaan met het losraken van een laag van het materiaal of bijvoorbeeld met het uitdrukken van voegwerk. Omzetting van mortelbestanddelen door een reactie met zouten kan leiden tot de vorming van verbindingen met groter volume, zoals ettringiet of thaumasiet. Dit zijn voor de samenhang van de constructie zeer gevaarlijke verbindingen, waardoor metselwerk zelfs geheel kan worden ontzet.

Naast het kristalliseren van zouten kunnen zouten ook hydrateren, dat wil zeggen watermoleculen opnemen in hun kristalrooster. Een bekend voorbeeld is natriumsulfaat, dat in de vorm van thenardiet kan voorkomen (Na_2SO_4) of in de vorm van mirabiliet ($Na_2SO_4 \cdot 10H_2O$). De laatste vorm (mirabiliet) neemt een aanzienlijk groter volume in dan thenardiet. Om die reden wordt eigenlijk altijd aangenomen dat mirabiliet veel schadelijker zou zijn dan thenardiet. Recent onderzoek heeft aangetoond, dat dit wel eens een onjuiste veronderstelling zou kunnen zijn.173 Dit onderzoek gaf aanwijzingen dat thenardiet bij voorkeur in het materiaal kristalliseert, na een hoge graad van oververzadiging te hebben bereikt en daarbij hoge drukken opbouwt, terwijl mirabiliet kristalliseert bij lagere oververzadiging en veelal als efflorescentie (buiten het materiaal) ontstaat.

Deze bevindingen tonen aan dat er vooralsnog nog steeds veel onduidelijk en onbekend is rond zoutkristallisatie-problemen.

Schadebeeld

Een typisch voorbeeld van cryptoflorescentie wordt in figuur 17 gegeven. Hier vindt kristallisatie plaats achter het voegwerk dat vervolgens naar buiten wordt gedrukt. Het gaat om de muur rondom een kerk waarbij het (nieuwe) voegwerk in cementmortel grotendeels loskomt van de ondergrond die met kalkmortel is opgetrokken.

Onderzoek

Ook in een geval als dit wordt begonnen met een visuele inspectie. Daarbij wordt ook nagegaan of de voeg op niet beschadigde plaatsen hol klinkt. Tevens wordt er bemonsterd om visueel of microscopisch de aansluiting van de metselmortel op de voegmortel te controleren en om de zouten ten analyseren.

Voor analyse van zouten is XRD (röntgendiffractie-analyse) aan de uitbloei een goede methode. Daarnaast kan worden onderzocht welke vochtbron verantwoordelijk is voor het transport van de zouten. Gaat het alleen om regen of bijvoorbeeld ook om opbrekend vocht. Het antwoord is van belang voor de reparatie.

Oorzaak

Er treedt zoutkristallisatie op achter de *nieuwe* (cementgebonden) voeg. Als de ruimte vol is kan nieuw kristalliserend zout een zeer hoge druk ontwikkelen. Daarbij wordt de voeg naar buiten gedrukt.

Regen- of grondwater vormt het transportmiddel voor de zouten. De steen bevat hoogstwaarschijnlijk vrij veel sulfaat. Tussen oude (kalk)mortel en nieuwe cementmortel
vindt geen of weinig vloeistoftransport plaats bij het drogen (vergelijkbaar met de situatie die in § 3.2 is besproken). Dit is een gevolg van een verschil in capillairsystemen van de kalkmortel en de cementmortel of van een holte tussen voeg- en metselmortel die is ontstaan door het onvoldoende aandrukken van de voegspecie bij het verwerken. In beide gevallen treedt kristallisatie op ter plaatse van het grensvlak van, of in de holle ruimte tussen deze beide mortels. De druk die de zouten opbouwen leidt tot het afspringen van de voeg. De sterke hechting van de cementgebonden mortel leidt er toe dat hierbij vaak ook delen van de steen afspringen.

Reparatieadvies

Bij eenzijdige beregening van metselwerk (en droging aan de andere zijde) zou de regenzijde beschermd moeten worden. Daarvoor kan gedacht worden aan het schilderen van de gevel, het aanbrengen van een bepleistering of eventueel, indien er geen alternatieven zijn en uit onderzoek blijkt dat dit mogelijk is (zie § 2.2!), het hydrofoberen van die regenzijde.

Bij een goede bescherming tegen indringen van vocht kan een mortel worden gekozen, die zo goed mogelijk overeenkomt met de al aanwezige metselmortel. Een analyse van de samenstelling van de aanwezige mortel is daarom gewenst.

3.4 Vorming van thaumasiet en ettringiet

Aanwezigheid van sulfaat (bijvoorbeeld afkomstig uit de lucht, in de vorm van zwaveldioxide (SO₂), of uit baksteen) kan met componenten uit hydraulische bindmiddelen en in mindere mate bij traskalkmortel leiden tot het ontstaan van expansieve verbindingen zoals ettringiet en thaumasiet. In dit voorbeeld behandelen we schade aan metselwerk in een kalkmortel met hydraulische, trasachtige bestanddelen.

Ettringiet (3 CaO · Al₂O₃ · 3 CaCO₄ · 32 H₂O) is een zwellende verbinding. Bij de productie van cement wordt bewust een geringe hoeveelheid gips aan de
Duurzaamheid en verwering

cementklinker toegevoegd om al te snelle verstarring van de specie te voorkomen. Het gips reageert namelijk met het C\textsubscript{3}A. Niet alle C\textsubscript{3}A wordt daarmee gebonden, maar de cementdeeltjes worden door het daarbij gevormde primair ettringiet als het ware ingepakt en daardoor van het omringende speciewater afgesloten (zie de para-
graaf over portlandcement in § 7.4 van hoofdstuk 3). De volumevergroting bij het ontstaan van primair ettringiet wordt tijdens het begin van de hydratatie min of meer gecompenseerd door de gelijktijdig optredende drogingskrimp en bovendien is de mortel dan nog plastisch. De vorming van primair ettringiet leidt daardoor niet tot schade. Na een zekere tijd wordt het ettringiet ontbonden.

Het ettringiet dat wordt gevormd in een uitgeharde cementmortel – ook wel secundair ettringiet genoemd – beschadigt wel de structuur van de mortel en is daarom schadelijk en ongewenst.

Ettringiet en thaumasiet (CaCO\textsubscript{3} · CaSiO\textsubscript{3} · CaSO\textsubscript{4} · 15 H\textsubscript{2}O) zijn verbindingen die gevormd kunnen worden door de reactie van mortelcomponenten met calciumsulfaat en water. Voor het optreden van de reactie zijn een (zeer) hoog vochtgehalte, een relatief lage temperatuur (buitenomstandigheden) en een hoog sulfaatgehalte noodzakelijk. De verbinding neemt een groter volume in dan de oorspronkelijke componenten. Dat kan tot zwelling van de mortel leiden.

In het algemeen wordt aangenomen dat ettringiet met name ontstaat uit de C\textsubscript{3}A, die aanwezig is in cement. Daarbij gaat het voornamelijk om het aanwezige Al\textsubscript{2}O\textsubscript{3}.

De vraag doet zich voor of ook andere mortelbestanddelen, die Al\textsubscript{2}O\textsubscript{3} bevatten, kunnen bijdragen aan of leiden tot de vorming van ettringiet. Uit recent onderzoek door TNO Bouw174 blijkt dat tufsoorten (de grondstof van tras) een aanzien-
lijke hoeveelheid Al\textsubscript{2}O\textsubscript{3} bevatten (er werden waarden gevonden tussen 15 en 19%).175

Ervaringen in enkele schadegevallen, waarbij ettringiet werd aangetroffen en waarin naar alle waarschijnlijkheid hydraulische kalk en tras-kalkmortels waren toe-
gepast, lijkt de mogelijkheid van tras als bron van Al\textsubscript{2}O\textsubscript{3} bij het ontstaan van ettrin-
gietschade niet uit te sluiten. We moeten echter voorzichtig zijn met een dergelijke conclusie. Zo wordt in oudere literatuur176 nadrukkelijk gesteld dat de vervanging van portlandklinker door tras de sulfaatbestendigheid (onder zeer vochtige omstan-

174 Brendle 2003.
175 Zie ook Brade 1827 voor een tabel met samenstellingen van puzzolanen. Daaruit blijkt dat volgens hem tras 28% aluminiumoxide bevat. (Zie ook hoofdstuk 2, § 2.9.)
176 Dreyfus 1950, p. 533.
digheden) juist vergroot! Wellicht zijn de schadegevallen incidenten, toe te schrijven aan een onvolledige kalktrasreactie of aan de aanwezigheid van kleiachtige verontreinigingen in het gebruikte zand. Hierover is het laatste woord zeker nog niet gesproken.

Figuur 18
Links boven: Schadebeeld in de boogdoorgang van een brug: schollen baksteen springen af en voegwerk wordt uitgedrukt. Links onder: Begin van schade, zichtbaar rechtsonder in het boorgat (zie pijltje): er begint een schil van de baksteen los te raken, de metselmortel toont verlies aan samenhang. Rechts: Het (hygroscopisch) vochtgehalte in een van de brugpijlers als functie van de afstand tot het brugdek en als functie van de boordiepte (respectievelijk vijf centimeter, 25 cm en 45 cm). De lijnen rechts geven het vochtprofiel. De lijnen links (zijnde het hygroscopisch vochtgehalte) representeren het zoutprofiel. © TNO Bouw

Voor de vorming van thaumasiet dient de mortel de componenten calciumcarbonaat en calciummonosilicaat te bevatten. Verder is sulfaat nodig in de vorm van calciumsulfaat (gips). Die laatste verbinding kan ontstaan door de reactie van alkalisulfaat uit de (bak)steen of binnengedrongen zwaveloxide uit de lucht met calciumhydroxide of calciumcarbonaat uit de mortel. Voor de vorming van de zouten moet verder veel water voorhanden zijn, niet alleen omdat deze zouten zelf veel water bevatten maar ook en soms vooral om eerst het sulfaat uit de steen naar de mortel te transporteren.
Schadebeeld

Een typisch schadebeeld is het afspringen van schollen metselwerk. Soms gaat het ook om het uitdrukken van de voegen, gepaard gaand met zwellen, laagvorming in of verkruimelen van de metselmortel. Soms staat de muur daarbij bol. In dat geval kan het beeld gemakkelijk worden verward met dat van vorstschade.

Ook treedt in bepaalde gevallen sterke verticale (en soms horizontale) scheurvorming in het metselwerk op, die in eerste instantie eenvoudig verward kan worden met constructieve schade (overbelasting, kruipt).

Bij het voorbeeld van figuur 18 gaat het om het metselwerk van de boogdoorgangen en de pijlers van een historische, gemetselde brug. Hier springen schollen af, bestaande uit zowel baksteen als voegwerk.

Onderzoek

Bij een dergelijk schadebeeld kan het gaan om vorstschade dan wel om de vorming van verbindingen met groot volume. Er dient altijd bemonsterd te worden om de juiste oorzaak vast te stellen en om inzicht te krijgen in de vochtbron(nen) die hierbij een rol spelen. In figuur 18 rechts is de aangetroffen vochtverdeling weergegeven. Het vochtgehalte is extreem hoog. Het hygroscopisch vochtgehalte bij een bepaalde relatieve vochtigheid van de lucht. Het evenwichtsvochtgehalte van een met vochtaantrekkend (hygroscopisch) zout belast bouwmateriaal bij een bepaalde relatieve vochtigheid van de lucht.

177 Het evenwichtsvochtgehalte van een met vochtaantrekkend (hygroscopisch) zout belast bouwmateriaal bij een bepaalde relatieve vochtigheid van de lucht.

© TNO Bouw
Om inzicht te krijgen in de aanwezigheid van de genoemde verbindingen vormen petrografie van dunslijppreparaten (PFM) van de mortel een goed uitgangspunt. Daarmee kan ook inzicht worden verkregen in de samenstelling van de mortel. Aangetroffen verbindingen kunnen met REM / RMA (Raster Electronen Microscoop / Röntgen Micro Analyse) nader worden onderzocht. Bij aantreffen van bijvoorbeeld ettringiet of thaumasiet is het verstandig een mogelijke bron van sulfaten op te sporen.

Het onderzoek aan de dunslijppreparaten toont concentraties van waaruit scheuren verlopen (zie figuur 19). Dit preparaat is afkomstig uit een boorkern genomen ter hoogte van ongeveer twee meter. De bewuste verbindingen bevinden zich op een diepte van vijf tot tien centimeter achter het oppervlak.

Te zien is de overgang van een aangetaste zone (A) naar een niet aangetaste zone (NA). In de aangetaste zone is het bindmiddel voor een deel opgelost, waardoor een hogere porositeit (lichtere kleur) is ontstaan dan in de niet aangetaste zone met de oorspronkelijke porositeit (donkere kleur).

De aantasting komt voort uit de vorming van naaldvormige kristallen, die in concentraties (Kr) aanwezig zijn. Met REM / RMA werd aangetoond dat het om thaumasiet ging. Omdat thaumasiet niet hygroskopisch is, vertoont het verloop van het hygroskopisch vochtgehalte (figuur 18 rechts) geen bijzonderheden.

Oorzaak

De vorming van thaumasiet in de metselmortel (een kalkmortel met hydraulische, trasachtige bestanddelen), leidde tot microscheuren en zwelling in de mortel. Door de volumevergroting aan de buitenzijde van het metselwerk ontstond aldaar drukspanning. Dat had het spatten van het metselwerk tot gevolg (in de buitenste zone van het metselwerk wordt druk opgebouwd). Bij dun metselwerk zou dat kunnen leiden tot krom trekken of bol staan. Bij dikker metselwerk is dat niet mogelijk en treedt het spatten op. Door het overeenkomstige schadebeeld wordt het schademechanisme zonder nader onderzoek gemakkelijk verward met vorstschade.

Bepalende factoren zijn de waterpenetratie (via het bovengelegen brugdek en door de gewelven omlaag) en de beschikbaarheid van sulfaat (dit kan van binnenuit komen, namelijk uit de zachte rode baksteen en van buitenaf, bijvoorbeeld van de dieselmotoren van de rondvaartboten). Samen met het gebruik van een kalkmortel met hydraulische bestanddelen (als bepalende materiaalfactor) hebben zij tot dit degradatieproces geleid.
Reparatieadvies

Uiteraard dient in de eerste plaats vochtbestrijding plaats te vinden (door beperking dan wel onderbreken van de vochttoetreding via het brugdek en via de brugrand).

Afhankelijk van de mate van schade zal voegwerk vervangen moeten worden of zal nieuwe steen ingeboet moeten worden. Omdat de vochtbelasting vooralsnog hoog is en het onzeker is of een volledige bestrijding van de vochtbronnen wel mogelijk is wordt in dit geval het gebruik van een mortel met een sulfaatbestendig bindmiddel geadviseerd.

Bij restauratie van monumenten wordt nogal eens gebruik gemaakt van wit portlandcement, teneinde een betere kleurovereenkomst met de originele mortel te verkrijgen. De meeste witte cementen zijn rijk aan tricalciumaluminaat (C₃A), en daarmee sulfaatgevoelig; met name kan onder condities met voldoende vocht ettringiet worden gevormd.

Als sulfaatbestendige bindmiddelen kunnen onder andere hoogovencement (CEM III), met een slaggehalte >65% en zogenaamd sulfaatbestendig portlandcement (met een laag C₃A gehalte) worden beschouwd.

Bij het gebruik van een traskalkmortel wordt in principe de kalk gebonden aan de tras en worden silicaten gevormd. Het risico van vorming van gips of van zwellende verbindingen is dan geringer. Randvoorwaarde is wel dat gedurende lange tijd voldoende water aanwezig is, anders blijft de tras een inerte toeslagstof. Daar moet bij worden aangevuld dat in tras aanzienlijke hoeveelheid (circa 15% Al₂O₃) aanwezig kan zijn. In hoeverre dat eventueel weer zou kunnen bijdragen aan de vorming van zwellende verbindingen zoals ettringiet, wanneer de tras-kalk reactie niet tot stand zou komen, is (nog) niet duidelijk.

Aan de toe te passen mortel zijn twee randvoorwaarden te stellen. Allereerst moet een goede aansluiting worden bereikt tussen de reparatiemortel en de oude mortel, teneinde vochttransport (en eventueel zouttransport) naar buiten toe (bij de droging van de constructie) mogelijk te maken. Daarnaast zal de reparatiemortel slechts een betrekkelijk lage hechtsterkte op de steen mogen bereiken, zodat bij eventuele zoutkristallisatieverschijnselen de nieuwe mortel wordt uitgedrukt, zonder aan de omgevende steen schade te berokkenen. De mortel mag niet mechanisch worden verdicht, teneinde de hechting aan de steen en de dichtheid van de mortel beperkt te houden.

3.5 Gipsvorming, zwarte korsten, openbarsten van voegen

Gipsvorming aan kalkmortelvoegen kan zich voordoen door inwerking van zwavelverbindingen (SO₃) uit de atmosfeer. Met name in de vorm van droge depositie op weinig aan sterke regenval blootstaande gevels kan een gipskorst ontstaan. Die is
van origine wit. Bij de aanwezigheid van veel roetdeeltjes in de lucht ontstaat een (aan het oppervlak) zwartgekleurde gipskorst. De vorming van gips gaat gepaard met enige zwelling. Daardoor kan de gipskorst, na tot enige dikte te zijn aange- groeid, zichzelf afdrukken. Er is sprake van oppervlakkige schade, die zich herhaald in de tijd kan voordoen.

Figuur 20
Links: Detail van het openbarsten van de voegmortel. Rechts: Aanwezigheid van zwarte korsten op het voegwerk. Bij een deel van het voegwerk is de korst inmiddels afgeval- len © TNO Bouw

Sulfaat kan ook in het metselwerk zelf (bijvoorbeeld in de baksteen) aanwezig zijn en vervolgens van daaruit in de voegmortel terechtkomen. Door de gipsvorming in de mortel kan die zwel- len en als gevolg daarvan openbarsten. Daarbij kan onder omstandigheden zoveel druk worden uitgeoefend, dat de steen afschilfert.

Schadebeeld
In figuur 20 zijn twee typerende voorbeelden gegeven van deze vorm van degradatie. Figuur 20 links toont het openbarsten van voegmortel. Het buitenste deel van de mortel vertoont ook verlies aan samenhang. In figuur 20 rechts wordt de aanwezigheid van een zwarte gipskorst op voegwerk getoond. Voor een deel is de zwarte korst intussen afgevallen.

Figuur 21
Openbarsten van de voegmortel door de vorming van Friedels zout. © TNO Bouw
Onderzoek

Het aangetaste voegmateriaal kan met REM/RMA of XRD worden onderzocht om na te gaan of er sprake is van gipsvorming. Eventueel kan petrografisch onderzoek aan een dunslijppreparaat worden uitgevoerd. Om vast te stellen of het sulfaat, benodigd voor de reactie, afkomstig is uit de baksteen dan wel uit het omgevende milieu, is het van belang het sulfaatgehalte van de baksteen te kennen. Is dat erg hoog dan vormt dat een aanwijzing voor een proces dat vanuit het materiaal zelf is begonnen. Is dat laag, dan moet het sulfaat van elders afkomstig zijn.

Oorzaak

De gipsvorming ontstaat door de omzetting van kalk in gips. De omzetting gaat gepaard met volumevergroting, die leidt tot openbarsten van de voeg. Als gevolg van de daarmee gepaard gaande verzwakking treedt bij verdere sulfaatvorming verkruimelen op.
Bij aanwezigheid van een zwarte korst gaat het meestal om een proces van droge (en in mindere mate natte) depositie van luchtverontreiniging (met name van SO₂). Bij aanwezigheid van voldoende vocht in de vorm van regenwater, condens of dergelijke kan de kalk worden omgezet. In geval van openbarsten, zonder zwarte korst, betreft het meestal sulfaat uit de ondergrond (met name uit de baksteen).

Een vergelijkbaar schadebeeld (openbarsten) kan overigens ook bij de aanwezigheid van chloride optreden. Dit wordt geïlustreerd door figuur 21.

In het daar getoonde geval ging het om een voeg met als samenstelling 1 : 3 in volumedelen (1 kalk : 3 zilverzand), waaraan een beetje witte portlandcement was toegevoegd. De gevel was in een monumentaal stadsbeeld nieuw opgetrokken met behulp van bakstenen afkomstig van een oud pand. De bakstenen waren van oude mortelresten ontdaan door ze te drenken in een oplossing van zoutzuur. Na verloop van tijd werden ze met behulp van stromend kraanwater gespoeld, totdat de zuurgraad (pH) van het uitstromende water neutraal was geworden (pH = 7). De stenen werden gedroogd en gebruikt. Na verloop van circa twee jaar ontstond de eerste schade (openbarsten van de voegen). Uit onderzoek kwam vast te staan dat de bakstenen en de mortel een zeer hoog chloridegehalte hadden. Voor de mortel was dat 1 % van het mortelgewicht, hetgeen overeenkwam met ongeveer 2,5% van het cementgewicht. Het maximum toegestane gehalte bedraagt 0,02% ten opzichte van het cementgewicht. De schade ontstond uiteindelijk omdat uit de reactie tussen tricalciumaluminaat (uit wit portlandcement) en de nog steeds aanwezige chloriden uit de baksteen een zwellende verbinding kon ontstaan, die bekend staat als Friedels zout (3 CaO · Al₂O₃ · CaCl₂ · 10 H₂O).

Reparatieadvies

In principe zou bij het ontstaan van zwarte korsten weer dezelfde mortelsamenstelling (kalkmortel) als aanwezig opnieuw kunnen worden toegepast. Bij het ontstaan van gipsvorming van binnenuit, waarbij veelal sprake zal zijn van een geconcentreerd en sneller aanbod van sulfaat, is de toepassing van een sulfaatbestendig bindmiddel te overwegen. Wel dient men andere compatibiliteitsoverwegingen te betrekken bij de keuze (zie bijvoorbeeld § 3.2).

3.6 Expansieve gipsvorming aan de binnenzijde van een gebouw

Expansieve gipsvorming aan de binnenzijde van een gebouw is een schade die we vooral kennen uit gebouwen met een zekere schoorsteenwerking, waarbij mede als gevolg van een relatief sterke droging aan de binnenzijde sprake is van een vochttransport van buiten naar binnen. Typische voorbeelden daarvan zijn molens en (kerk)torens.
Zoals in § 3.5 is opgemerkt, kan sulfaatvorming (gipsvorming) vanuit het metselwerk zelf optreden. De gipsvorming kan dieper in de mortel plaatsvinden en door de daarmee gepaard gaande zwelling kan een laag van het metselwerk afspringen. Ook kan onder bepaalde omstandigheden de gipsvorming in de buitenste laag van de baksteen zelf voorkomen Het gevolg kan dan zijn het ontstaan van een soort blaren aan het oppervlak van de steen, die uiteindelijk openbarsten.

Schadebeeld

Het schadebeeld dat wordt getoond in de figuren 22 en 23 komt voor aan de binnenzijde van de muur van een windmolen. Er treedt laagvorming aan baksteen en pleisterlaag op, alsmede het verkruiemelen van de metselmortel aan de binnenzijde van de muur en tenslotte het openbarsten (blaarvorming) van het baksteenoppervlak. De molen is aan de buitenzijde gehydrofobeerd. Deze behandeling blijkt niet erg doeltreffend te zijn. De muren van de windmolen zijn hellend. Hydrofoberen helpt in dit soort situaties nauwelijks en heeft eigenlijk alleen het negatieve effect dat het drooggedrag aan de buitenzijde ongunstig wordt beïnvloed. Samen met de goede ventilatie van de binnenruimte van de romp heeft dit geleid tot het ontstaan of versterken van een grote vochtstroom van de buitenzijde naar de binnenzijde van het metselwerk.

Onderzoek

Het is allereerst van belang om antwoord te krijgen op de vraag of en hoe er voldoende vocht aan de binnenzijde van de constructie kan komen. Daarom werd het vochtverloop over de muurdoorsnede bepaald (zie figuur 24). Verder moeten de aard van de uitbloei en van het uiteengevallen materiaal met bijvoorbeeld REM / RMA (zie figuren 25) of met XRD worden onderzocht. Eventueel kan met behulp van PFM microscopie aan een dunslijppreparaat de samenstelling van de mortel en van het materiaal in het aangetaste gebied worden bepaald.

Het vochtprofiel over de muurdiepte toont een betrekkelijk hoog vochtgehalte, hetgeen wijst op vochtpenetratie uit een externe bron. Op grond van het hygroscoöpisch vochtgehalte wordt vastgesteld dat er sprake is van een betrekkelijk lage concentratie aan hygroscoöpische zouten. Dit is in lijn met de bevindingen van het REM / RMA onderzoek, waaruit blijkt dat gips aanwezig is. Gips is namelijk een niet-hygroscooöpisch zout.

Oorzaak

De oorzaak van de schade ligt in de omzetting van de kalkmortel in gips en, gezien het schadebeeld van figuur 23, ook in omzetting van in de steen aanwezige kalk. De
Gipsvorming gaat gepaard met volume-vergroting en daarmee met de opbouw van druk. Dat leidt tot het afdrukken van de pleisterlaag en tot het loskomen van schollen van het metselwerk. De gipsvorming vindt in dit geval met name plaats aan het binnenoppervlak van de muur. De reden daarvan is dat het vocht- en zouttransport (regendoorslag) hier voornamelijk van buiten naar binnen optreedt. Aan het binnenoppervlak vindt de droging plaats en uiteindelijk ook de omzetting.

Het binnendringen van regenwater kan zeker bij molens niet door hydrofoberen worden verholpen. De meest waarschijnlijke bron van sulfaat is in dit geval de zachte rode baksteen, die is toegepast aan de binnenzijde van de massieve muren. Vrijwel zeker speelt ook het klimaat binnen de molen (zeer sterke luchtbeweging) een rol bij dit schadebeeld. Door de bevochtiging van buitenaf en de sterke droging aan de binnenzijde komt het sulfaat in de buurt van het binnenoppervlak terecht.

Overigens kan hier ook een tweede schadeproces een rol spelen. Door de invloed van vorst kan na een natte periode in de winter zelfs vorstschade aan de binnenzijde ontstaan. Uiteraard moet het metselwerk daartoe aan de binnenzijde van de molen tot onder het vriespunt kunnen afkoelen en moet de steen aan de binnenzijde van de muur een zeer hoog vochtgehalte kunnen krijgen. In de al door gipsvorming verzwakte structuur kan dit proces bijdragen aan het schadebeeld dat in figuur 23 is getoond.
Duurzaamheid en verwerking

Figuur 26
Voorbeelden van encrustaties (34 a. Vestingmuur, 34 b. Historische brug, 34 c. Tunnel in Nanjing in China, 34 d. Tunnel. Duidelijk voorbeeld van stalactietvorming. Vooral in het geval van de vestingmuur is een harde glasachtige structuur aanwezig, die moeilijk te verwijderen is. De uitloging kan de vorm krijgen van stalactieten, zoals het voorbeeld van de tunnel in Nanjing toont. © TNO Bouw

Reparatieadvies

De penetratie van regenwater zou zoveel mogelijk voorkomen moeten worden. Gezien het feit dat de nu aan de buitenzijde aanwezige voegmortel er uitstekend uitziet, de hydrofobering op steen en op mortel afzonderlijk goed functioneert, maar er toch op de aansluiting van de voegen op de baksteen waterpenetratie optreedt, heeft het weinig zin om opnieuw te voegen of te hydrofoberen. Het hydrofoberen heeft juist bijgedragen aan de schade en we zouden deze behandeling graag

161
ongedaan willen maken. (Uit onderzoek naar vochtproblemen bij molens is gebleken dat het effect van hydrofoberen daar doorgaans negatief is.) In dit geval kunnen we het probleem dus niet vanaf de buitenzijde oplossen en moeten we de watertoevoer voor lief nemen.

De enige oplossing zit in een benadering aan de andere kant. Daartoe moeten de pleisterlaag en de loszittende delen van het metselwerk verwijderd worden. Ook de (metsel)mortel dient over de diepte van de aantasting te worden verwijderd. Als reparatiemortel zou een mortel op basis van een sulfaatbestendig bindmiddel het best functioneren. Daarna kan de muur worden afgewerkt met een zoutbestendige open poreuze restauratiemortel.

3.7 Uitloging

Bij uitloging (en daarop volgende afzetting) gaat het om mortelbestanddelen, die naar het muuroppervlak worden getransporteerd en daar afzettingen vormen. Uitloging is vooral het gevolg van stroming van water en nauwelijks van normaal capillaire transport. In droge muren (waar sprake is van damptransport) speelt uitloging uiteraard geen rol.

Schadebeeld

De figuren 26 a tot en met d zijn voorbeelden van het hier beschreven verschijnsel. Daarin worden een muur behorend tot de vestingwerken van een monumentale stad, een gerestaureerde historische brug en een tunneltje getoond. Het gaat hier om afzettingen ten gevolge van uitloging van het bindmiddel van de mortel. Derzelijke vormen van afzetting worden ook wel encrustaties genoemd.

Onderzoek

Onderzoek zal in dit soort gevallen voornamelijk gericht zijn op het vinden van mogelijke inwateringspunten en andere vochtbronnen. Zo zal de detaillering van aansluitingen goed moeten worden gecontroleerd in verband met inwatering. Ook onderzoek naar de vochtverdeling in de constructie kan van belang zijn bij het opsporen van de vochtbron. Tenslotte kan de samenstelling van de afzetting worden geanalyseerd.

Oorzaak

Het gaat in dergelijke gevallen om afzetting van uitgeloogde mortelbestanddelen (met name nog niet gecarbonaterte kalk). De afzetting bestaat bij kalkmortels

grotendeels uit calcietachtig materiaal, maar bevat in het geval van hydraulische kalk en zeker bij cementmortels ook silicaten. Er is in die laatste gevallen sprake van een meer of minder harde, glasachtige structuur met een goede hechting aan de ondergrond.

De afzetting begint vaak op een lintvoeg, die enkele stenen lager ligt dan waar het inwateren plaatsvindt. Dit komt doordat het metselwerk een zekere kolom water van binnenuit kan dragen.

Waterpenetratie (regen), meestal van bovenaf of water dat van achteren toetreedt bij grondkerende muren zijn de meest voorkomende vochtbronnen. Het type mortel (bindmiddel) en misschien ook het al dan niet aanwezig zijn van een luchtbelvormer kunnen verder de ernst bepalen. De invloed van de luchtbelvormer zou te maken kunnen hebben met het feit dat deze het watervasthoudend vermogen van de mortel vermindert, waardoor meer kalkwater naar de steen of het buitenoppervlak getransporteerd kan worden. (Op de capillaire activiteit hebben luchtbelvormers geen invloed; daarvoor zijn de luchtbellen te groot.) Het gevolg zal met name een sterkere mate van kalkuitbloei zijn. Of hierdoor ook een sterkere uitzetting zou kunnen optreden is echter nog slechts een niet bevestigde hypothese.

Reparatieadvies

Een adequate vochtbestrijding is natuurlijk van groot belang. Overmatige watertoetreding dient te worden tegengegaan door bijvoorbeeld het aan de bovenzijde afdekken van muren, het dichten van scheuren of het waterdicht bekleden van grondkerende muren aan de grondzijde.

Een belangrijke vraag is, hoe dergelijke afzettingen zijn te verwijderen. Korsten dienen bij voorkeur afgestoken of afgebikt te worden. Restanten kunnen daarna soms door voorzichtig stralen of borstelen worden verwijderd.

Bij de keuze van mortels bij restauratie of nieuwbouw moet worden bedacht dat kalkmortels calcietuitloging kunnen geven en cementmortels naast calcietuitloging tevens silicatuítloging. Calciët is eenvoudiger te verwijderen. De kans op uitloging lijkt het geringst bij de toepassing van tras kalk, omdat de tras de vrije kalk kan binden.

3.8 Erosie en uitspoeling

Schadebeeld

Het gaat in het voorbeeld van figuur 27 om een stadsmuur, gemetseld met een kalkmortel. De mortel vertoont erosie als gevolg van uitloging door langsstromend
regenwater. Belangrijk bij dit verschijnsel zijn zware expositieomstandigheden, die bijvoorbeeld ook bij geveltoppen kunnen voorkomen.

Onderzoek

In het algemeen is niet meer nodig dan een visuele inspectie. Wanneer een kalkmortel zeer jong al gaten begint te vertonen is nader onderzoek wel aan te bevelen, met name naar samenstelling mortel en de mogelijke aanwezigheid van zouten (met name chloriden, bijvoorbeeld in de nabijheid van de zee).

Oorzaak

Als gevolg van langsstromend regenwater en slagregen wordt de kalk opgelost. Het koolzuur uit regenwater zet het weinig oplosbare calciumcarbonaat om in goed oplosbaar calciumbicarbonaat. Dit leidt tot afzetting van mortelbestanddelen op het muuroppervlak.

Het ontstaan van een gaterige structuur in de mortel kan duiden op dichtheidsverschillen of ongelijkmatigheden in de samenstelling (ongelijkmatige verdichting of slechte menging; het laatste komt het meeste voor) of op verbranden van de mortel.

Reparatieadvies

Zo mogelijk dient te worden voorkomen dat grote hoeveelheden regenwater over het metselwerk aflopen en met name dat als gevolg van een bepaalde detailléering grote hoeveelheden water geconcentreerd op het oppervlak terecht zullen komen.

Kalkmortel is niet bestand tegen overmatig langslopend regenwater. Met name een mortel op basis van luchtkalk is daarvoor gevoelig. Alternatieven zijn
De toepassing van hydraulische kalk of van kalk met puzzolanen (bijvoorbeeld een mortel van tras, kalk en zand in een bepaalde verhouding). De laatste dient overigens wel in het warme jaargetijd te worden aangebracht en dient daarbij gedurende lange tijd (minimaal vier weken) goed natgehouden te worden, omdat anders het risico bestaat dat het puzzolaan na carbonatatie van de kalk als inert toeslagmateriaal overblijft. In dat geval ontstaat er een betrekkelijk zwakke mortel, met alle kans op de beschreven uitspoeling. De kwaliteit van het puzzolaan speelt uiteraard een grote rol. Niet elk puzzolaan heeft voldoende reactiviteit met kalk om hydraulische mortel te vormen.

3.9 Zwakke mortel (vroegtijdige vertering)

De keuze van een (voeg)mortel dient altijd afgestemd te zijn op de condities waaronder hij dienst zal doen. Het gebruik van traskalkmortels was wijdverbreid in Nederland en in België. Naast tras komt ook vaak gemalen baksteen als puzzolaan voor in oude mortels. Dergelijke mortels met tras of met gemalen baksteen werden met name toegepast in waterbouwkundige werken en in funderingen (vandaar ook het trasraam), kortom in constructies met een hoge waterbelasting. In veel restauraties in de afgelopen tien tot vijftien jaar zijn traskalkmortels ook toegepast voor reparatievoegwerk. De achtergrond daarvoor ligt zowel in het streven naar een echt Nederlandse, oude mortelsamenstelling, als in het streven naar een met het monument compatibele mortel met betere eigenschappen dan cementmortels (minder hard, minder stijf, taai). Dergelijke mortels werden in het verleden echter niet gebruikt voor navoegwerk. De toepassing van traskalkmortel voor navoegwerk stemt dus niet overeen met de traditie. Wellicht is de keuze vooral gebaseerd op een gering vertrouwen in zuivere kalkmortels. Daarom wordt ook vaak cement aan deze mortels toegevoegd.

In veel van het recente navoegwerk met traskalkmortels hebben zich problemen voorgedaan. De redenen daarvoor zullen hierna worden besproken.

Omdat tras alleen reactief is in de aanwezigheid van voldoende water en van nog niet gecarbonateerde kalk, dient een snelle droging van traskalkmortels te worden voorkomen. Wanneer geen rekening wordt gehouden met de noodzakelijke
verhardingscondities, zal een geringe samenhang en ook een geringe duurzaamheid het gevolg zijn. Ervaring leert dat de traskalkmortels zelfs nog langer dan cementmortels vochtig gehouden moeten worden.

Schadebeeld

In figuur 28 wordt de schade getoond aan een van de gevels van een kerktoren. De voegmortel, die was voorgeschreven had een samenstelling $1 : 1 : 6$ (tras : kalk : zand) in volumedelen. Aangezien de voegers klaagden over de verwerkbaarheid, werd extra zand (15%) toegevoegd. Na twee tot drie jaar was de voegmortel al sterk verweerd.

Onderzoek

Er werd een visuele inspectie uitgevoerd. Hierbij bleek dat de sterkste verwering was opgetreden aan de westgevel. De mortel vertoonde daar vrijwel geen samenhang. Meting van de voeghardheid toonde een hardheid van 12 tot 20. Normaal varieert de hardheid van een kalkvoeg van 25 tot 35. Verder werd onderzoek uitgevoerd naar de mortelsamenstelling, die uiteindelijk tot stand is gebracht. Onderzoek met behulp van PFM aan een dunslijppreparaat gaf inzicht in zowel de samenstelling en de porositeit als in de mate van carbonatatie van de kalk. Daarnaast kan ook chemische analyse meer inzicht geven in de samenstelling van de mortel.

Uit het PFM-onderzoek bleek dat de kalk al vrijwel volledig gecarbonateerd was. Een reactie met de tras was echter nauwelijks tot stand gekomen.

Oorzaak

Tras zelf kan niet als bindmiddel werken. Het is een puzzolaan materiaal, hetgeen betekent dat het alleen in aanwezigheid van kalk (gebluste kalk of de beperkte hoeveelheid kalk die vrijkomt bij de reactie van de portlandklinker) en water als bindmiddel fungeert. De reactie verloopt vrij traag, zeker bij een lage omgevingstemperatuur. In dit geval was het voegwerk in de maanden december en januari uitgevoerd, hetgeen vanuit het laatstgenoemde oogpunt niet verstandig is. Het risico bij voegwerk van traskalk is groot, dat het aanwezige vocht verdamp is voordat de reactie heeft plaatsgevonden. Intussen kan de kalk wel met kooldioxide uit de omgeving reageren tot calciumcarbonaat. Wanneer die omzetting heeft plaatsgevonden is de kalk niet meer beschikbaar voor de kalktrasreactie en de tras gedraagt zich

179 *Van der Klugt 1993.*
daarom slechts als een (inerte) toeslag. De traskalkmortel zal daardoor uiteindelijk maar weinig sterkte ontwikkelen. In wezen is er sprake van verbranden van de mortel.

In het onderhavige geval is de voegmortel nog eens extra zwak geworden door de toevoeging van nog meer zand. Uiteindelijk zal de snelste verwering optreden op de gevels met de hoogste vochtbelasting (west of zuidwest).

Reparatieadvies

De aanwezige voegmortel dient te worden verwijderd. In principe is traskalk niet het meest geschikte bindmiddel om in voegwerk toe te passen, vanwege het risico van te snelle uitdroging (verbranden) en het niet tot stand komen van de traskalkreactie.

Een alternatief is de toepassing van hydraulische kalk. Wordt toch voor traskalk gekozen (tras, kalk en zand in de verhouding 1 : 1 : 2) dan dienen daarvoor gunstige omstandigheden te worden gekozen of zonodig worden gecreëerd. De traskalkmortel zal in het warme jaargetijde aangebracht moeten worden en zal daarbij tevens gedurende lange tijd (minimaal vier weken) goed nat gehouden moeten worden, omdat anders de kans op de bovenbeschreven schade groot is.

3.10 Effect van zeezouten op kalkmortel

Schadebeeld

Figuur 29 toont het typische schadebeeld van de aantasting van voegwerk door zeezouten. De schade begint op de grens van steen en voeg.

Oorzaak

Bij kalkmortels in de nabijheid van de zee kan omzetting plaatsvinden van calciumcarbonaat (CaCO_3) met de belangrijkste component van zeezout (NaCl) tot het makkelijk oplosbare calciumchloride (CaCl_2). Overigens kan ook een harde voegmortel op cementbasis door hetzelfde proces worden aangetast. De aantasting vindt vooral plaats langs de rand van de steen. Dit komt doordat ook de steen zouten opneemt die als aërosol komen aanwaaien. De steen geeft deze zouten vervolgens door aan de voegmortel.

Reparatieadvies

Kalkarme mortels verdienen in de nabijheid van de zee de voorkeur, met name aan de op de regen- en windzijde georiënteerde gevels. De toepassing van hoogoven-cement biedt de beste mogelijkheden. Verder is gebleken dat het door de mortel mengen van zekere kunstharsemulsies de snelheid van aantasting sterk kan afrem-
men. Wel dient men andere compatibiliteitsoverwegingen te betrekken bij de keuze (zie bijvoorbeeld § 3.2).

3.11 Hygroscopisch gedrag van een pleisterlaag en voegmortel

Veel zouten kunnen vocht opnemen uit de lucht, als gevolg van hun hygroscopische eigenschappen. Overigens zijn niet alle zouten in dezelfde mate hygroscopisch. Indien hygroscopische zouten aanwezig zijn in het poriesysteem aan het oppervlak van bouwmaterialen, dan kunnen die materialen bij een voldoende hoge relatieve luchtvochtigheid (RV) vochtplekken gaan vertonen.

Figuur 30
Vochtplekken op het muuroppervlak onder invloed van verhoging van de RV van de omgevingslucht (links en midden). De cijfers geven de hoogte boven het vloeroppervlak van bemonsteringsplaatsen. Rechts is door de pleisterlaag heen ook het effect van de hygroscopiciteit van de voegen zichtbaar. © TNO Bouw

Schadebeeld

In het hier getoonde voorbeeld gaat het om de binnenmuren van een gerestaureerd monument. De schade bestaat uit vochtplekken, die lijken te komen en gaan, mede onder invloed van wisselingen in het buitenklimaat en bij aanwezigheid van grotere aantallen personen in de ruimte. Dit verschijnsel wordt ook opvallend vaak in kerkgebouwen aangetroffen.

Onderzoek

Om dit type schade te onderzoeken, zullen gruismonsters van de mortel moeten worden genomen. Het hygroscopisch gedrag bij verschillende relatieve vochtighe-
den moet worden bepaald en er dient onderzoek naar de aard van de zouten (bijvoorbeeld met REM / RMA en XRD) te worden uitgevoerd.

In dit geval werd als experiment in het vertrek stapsgewijs de luchtvochtigheid verhoogd met een luchtbevochtiger. Het verschijnen van de vochtplekken bleek overeen te komen met het hygroscopisch gedrag van de gruismonsters, die uit pleisterlaag en muur werden genomen.\(^{180}\)

Oorzaak

Het hygroscopisch gedrag van zouten, die aan het muuroppervlak en in de pleisterlaag zijn afgezet, vormt de verklaring voor het verschijnsel. Wijzigingen in de relative vochtigheid van de lucht en het gedrag van de zouten leiden tot het ontstaan en weer grotendeels verdwijnen van de vochtplekken.

Reparatieadvies

Toepassen van een meerlaags zoutbergend pleistersysteem in plaats van de aanwezige pleisterlaag, kan het probleem definitief oplossen. In principe kan ook het vervanging van de pleisterlaag door een pleister met een samenstelling als de huidige een oplossing bieden. Wanneer echter de achterliggende constructie en met name de voegmortel vocht en zouten bevat, bestaat het risico dat de verschijnselen terugkomen. Figuur 30 rechts laat het effect van de onderliggende voegen zien. Dat wijst er op dat de voegmortel veel hygroscopische zouten bevat.

Daarnaast bestaat wellicht de mogelijkheid door het beheersen van de luchtvochtigheid binnen de situatie beter onder controle te krijgen.

3.12 Biologische groei

Schadebeeld

Bealging en andere vormen van biologische groei (mossen, varens, hogere planten en dergelijke) hebben in belangrijke mate te maken met de aanwezigheid van vocht. Afhankelijk van het totale beeld van aantasting kan biologische groei als behorend bij het uiterlijk van het monument dan wel als afbreuk doend aan de waarde ervan
worden gezien. Daar speelt uiteraard ook de persoonlijke appreciatie van de beschouwer een rol bij.

Er zijn vooralsnog geen aanwijzingen dat kalkmortels qua gevoeligheid voor biologische aantasting afwijken van cementmortels, met name waar het algengroei betreft. Soms biedt de historische ondergrond een voedingsbodem voor (zeldzame, beschermd) planten. Met name in die situatie is het van belang een goede balans te kiezen tussen het behoud van het cultuurhistorisch en het natuurlijk erfgoed. Kalkmortels blijken voor sommige planten een betere voedingsbodem te zijn dan cementgebonden mortels. De reden daarvoor ligt overigens eerder bij fysische factoren (zoals watervasthoudend vermogen en een snellere verwering en daarmee de toegankelijkheid voor wortelgroei) dan bij de zuurgraad van dergelijke ondergronden, die voor kalk- en cementmortels vrijwel gelijk is.

Er kan geen algemene regel worden gegeven, hoe met het behoud van planten moet worden omgegaan. Per geval zal de situatie moeten worden beoordeeld. In diverse publicaties181 wordt verder ingegaan op het behoud van zeldzame planten.

\textbf{Onderzoek}

Onderzoek dient vooral te zijn gericht op het opsporen van de vochtbron en op de aanwezigheid van planten, die wortels vormen in het metselwerk. Met name door de wortelgroei van snelle groeiers als vlier en berk ontstaat gemakkelijk schade aan het metselwerk. Algen en korstmossen vormen zelden een probleem.

Mos onttrekt grondstoffen (kalk) aan de mortel,182 maar mosvorming moet vooral opgevat worden als een signaal dat er een vochtprobleem speelt en niet als een probleem op zichzelf.

\textbf{Oorzaak}

De oorzaak van biologische aantasting is in belangrijke mate gelegen in de aanwezigheid van vocht. Met name wanneer de detailering van aansluitingen te wensen overlaat of lekkages van watervoerende elementen als goten en hemelwaterafvoeren optreden (figuur 33 rechts), kunnen storende vormen van biologische groei optreden.

181 Schober 1995 \textit{en} Handleiding 1988.
182 Rijksdienst 1999; zie ook Adan 2003.
Reparatieadvies

Het bestrijden van vochtbronnen en de zorg voor adequate detaillering zijn de voornaamste uitgangspunten bij het voorkomen van ongewenste biologische groei. Daarnaast kan in algemene zin gesteld worden dat houtvormende gewassen zullen leiden tot wortelgroei en daarom verwijderd moeten worden, terwijl de groei van oppervlakkig blijvende gewassen als Hedera (klimop) beheersbaar dient te blijven (regelmatig snoeien).

4 Bezint eer ge begint

Het volgende hoofdstuk, dat handelt over de toepassing van kalk in de praktijk, begint met een gedeelte dat ingaat op onderzoek. In sommige gevallen, waar het om kleine reparaties gaat, ligt het niet altijd voor de hand om eerst een onderzoek uit te voeren. De kosten die voor onderzoek gemaakt moeten worden staan dan niet in verhouding met de kosten die met de kleine reparatie gepaard gaan. Datzelfde kan gezegd worden met betrekking tot de samenstelling van de mortel. Waar het om een enkele vierkante meter voegwerk gaat, zal men snel naar een in de handel verkrijgbare standaardmortel grijpen. Wanneer dit met inzicht en kennis van zaken gebeurt, is daar ook niets mis mee. Een goed vakman heeft immers voldoende kennis van zaken om, waar de oorzaak van de schade evident is, op grond van ervaring het juiste materiaal te kiezen.

Daar staat echter tegenover dat merendeel van de huidige bouwvakkers hun kennis aan de moderne bouwkunde en dus vooral aan de praktijk van het metselen en voegen van halfsteens buitenspoelbladen met een cementmortel ontlenen. Bij het herstel van traditioneel metselwerk is de standaardmortel waar zij naar zullen grijpen niet automatisch de geëigende mortel voor dit type werk.

De huidige bouwpraktijk kent geen onderzoekstraditie en er wordt vaak argwanend tegen onderzoekers en andere wetenschappers aangekeken. Wat men daarbij gemakkelijk uit het oog verliest, is dat voor het meeste onderzoek slechts een budget nodig is, dat qua omvang maar een fractie vormt van de kosten die bijvoorbeeld alleen al voor het steigerwerk of andere bouwplaatsvoorzieningen gemaakt moeten worden. Zoals in voorliggend hoofdstuk is aangetoond, is het aantal valkuilen waarin men zonder onderzoek kan lopen legio. Dat geldt overigens niet al-

183 Een handige regel daarbij is wel dat klimplanten langs muren nooit hoger mogen groeien dan de tuinman met zijn snoeischaar kan reiken (gesnoeide stukken van de planten kunnen dan nog gemakkelijk worden verwijderd). Uiteraard geldt deze regel alleen wanneer goten, pannen daken en dergelijke zich op voldoende hoogte bevinden om bij toepassing van de regel van plantengroei gevrijwaard te blijven.
Figuur 32
Biologische groei. Links: Pampus, één van de meest complete staalkaarten van degradatieverschijnselen, die in Nederland is te vinden. Rechts: Jacobaburcht Oostvoorne. Muurvarens in de gereconstrueerde benedenzone van de woontoren. © Bert van Bommel

Figuur 33
Links: Voorbeelden van algengroei en andere vormen van biologische aantasting op eenoude muur. Rechts: Algengroei, veroorzaakt door tekort schietende capaciteit van watervoerende elementen. © TNO Bouw
Duurzaamheid en verwering

leen voor de toepassing van kalkmortels, maar ook voor de toepassing van cementmortels, zoals hier ook al is aangegeven. Een pleidooi voor het uitvoeren van onderzoek en het weloverwogen kiezen van de toe te passen materialen is daarom zeker op zijn plaats.

Waar het in dit hoofdstuk vooral ging over onderzoek nadat problemen zijn gerezen, gaat het in het volgende hoofdstuk echter over onderzoek dat verricht moet worden voordat men een mortel gaat toepassen. Bezint eer ge begint, en dat geldt voor kalkmortels uiteraard net zo zeer als voor cementmortels!

Voorafgaande bezinning is ook nodig met betrekking tot de eisen die men aan de nieuwe mortel stelt. Die vormen immers de basis voor de keuze van de mortelsamenstelling en de werkwijze. Naast een technisch aspect kennen deze eisen ook een ethisch aspect. Ook dat aspect dient meegenomen te worden, want in de monumentenzorg gaat het immers niet alleen om bouwwerken, maar eerst en vooral om erfgoed dat aan onze zorgen is toevertrouwd.

Eerst nadat onderzoek en te stellen eisen zijn behandeld wordt in hoofdstuk 5 verder ingegaan op de toepassing van kalk op de bouwplaats. Daarbij komt niet alleen de historische bouwpraktijk aan de orde, maar worden ook aanwijzingen gegeven voor de toepassing van kalkmortels in de nieuwbouw en restauratie van de eenentwintigste eeuw.
1 Te verrichten onderzoek

1.1 Inleiding

Mortels, die worden gebruikt voor reparatie en onderhoudsdoeleinden in monumenten, moeten aan bepaalde eisen voldoen (in § 2 komen we daar op terug). Uit diverse gevallen van schade en vroegtijdig noodzakelijk nieuw onderhoud, waarvan in hoofdstuk 4 voorbeelden zijn besproken, blijkt dat er nogal wat gebrek aan inzicht bestaat in het vraagstuk van de compatibiliteit van mortels voor reparatie en onderhoud van historisch metselwerk.

Veel te vaak wordt de diagnose van schade achterwege gelaten. Dat wil zeggen dat er wordt vergeten om te kijken waarom men eigenlijk de mortel wil vervangen. En dat terwijl er toch overduidelijk een reden moet zijn, meestal gelegen in enige vorm van degradatie waardoor de bestaande mortel zijn functie niet meer kan vervullen. In vrijwel alle gevallen vormt een grondige analyse van de staat van conservering (schadediagnose) de noodzakelijke eerste stap voor het bereiken van een compatibele mortel. Na een periode waarbij in restauraties van (kalk)metselwerk recepten uit de nieuwbouw – dichte, harde cementvoegen – werden toegepast, is een reactie gevolgd waarin juist weer al te gemakkelijk op basis van een vaag begrip van de oude mortelsamenstelling of een oud recept een reparatiemortel werd voorgeschreven. In een enkel geval werd daarbij nog de vraag gesteld of door onderzoek aan de oude mortel het recept van de oude metselmortel kon worden geleverd.

Voor de keuze van de toe te passen mortel is echter meer nodig dan een analyse van de samenstelling van de oude mortel (of dan het zomaar gebruiken van een oud recept). In de eerste plaats is de verhouding van bindmiddel en zand bij een oude mortel veelal totaal verschillend van die in een mortel, gemaakt volgens hetzelfde recept, maar dan van moderne materialen. Moderne steenkalk is immers
Figuur 34
Dunne doorsnede (dunslijpreparaat). Rechts het monster na verharding van de hars, waarin het wordt gedrenkt. De bovenzijde wordt geslepen, waarna er een objectglasje op wordt geplakt. Vervolgens wordt het monster parallel aan het objectglasje afgezaagd en geslepen tot de gewenste dikte (20 tot 30 µm). Het resultaat is links te zien. © TNO Bouw

Figuur 35
Fresco op het gewelf van de kerk van Britsum, Friesland. De locatie en hoeveelheid monstermateriaal dienen in zo'n geval zeer beperkt te zijn en op een onopvallende maar relevante plaats te worden genomen. © TNO Bouw

Figuur 36
Overzichtsfoto (PFM) (afmetingen 2,7 x 1,8 mm) van een kalkmortel (B = bindmiddel, Z = zandkorrel). Het bindmiddelgehalte is hoog: de toeslagkorrels (Z) raken elkaar nauwelijks © TNO Bouw
zuiverder dan oude. Hetzelfde geldt tot op zekere hoogte ook voor schelpkalk, ook al wordt deze op traditionele wijze (maar nu beter gecontroleerd) vervaardigd. Daardoor loopt men de kans dat er bij een gelijk aandeel aan kalk uiteindelijk naar verhouding veel meer bindmiddel in de mortel zal zitten. Zo kan een mortel ontstaan met eigenschappen die sterk verschillen van de oude. Verder zijn er in de loop der jaren allerlei omgevingsfactoren (bijvoorbeeld zoutaanbod) geweest, die invloed op het oude metselwerk hebben uitgeoefend of hebben geleid tot vormen van degradatie (zoals uitloging, verlies aan bindmiddel en gipsvorming). Daardoor hoeft ook een mortel met een vergelijkbare samenstelling niet noodzakelijk compatibel te zijn met de aanwezige materialen. Tenslotte wordt in de huidige uitvoeringspraktijk over het algemeen onvoldoende rekening gehouden met specifieke omstandigheden die voor bepaalde historische mortelsamenstellingen noodzakelijk zijn. Wanneer bijvoorbeeld de mortel onvoldoende lang wordt natgehouden of onvoldoende wordt beschermd tegen vorst, zal het hervoegwerk een te geringe duurzaamheid kennen.

Samenvattend kunnen we stellen dat onderzoek, met als uiteindelijk doel om te komen tot compatibele reparatiemortels, de volgende onderdelen moet omvatten:

– vaststellen van het schadeproces,
– karakteriseren van zowel de textuur als de samenstelling van de aanwezige mortel,
– vaststellen van de fysische eigenschappen (zoals porositeit), mechanische eigenschappen, textuur en structuur van de reparatiemortel
 – in samenhang met de aanwezige oude materialen en
 – in samenhang met de (gevolgen van) degradatie,
– het vaststellen van de aard van de toeslagstoffen (zandtype, korrelgradering), het bindmiddel, additieven en hun verhoudingen.

Bij de bespreking van schadegevallen in hoofdstuk 4 is onderzoek naar schadeprocessen uitvoerig aan de orde geweest. In dit hoofdstuk zullen we ons vooral concentreren op het karakteriseren van de aanwezige materialen met behulp van microscopie en chemische technieken. Hierbij komen de mogelijkheden om met deze technieken schadeprocessen te identificeren nadrukkelijk aan de orde. Eerst wordt hier een schematisch overzicht gegeven, dat is ontwikkeld in het EU Pointing project, gericht op de mortelanalyse (figuur 37).

Op een aantal van de hier genoemde technieken en hun mogelijkheden voor het analyseren van schademechanismen wordt hierna ingegaan.
1.2 Visuele inspectie en bemonstering

Deze paragraaf, hoewel zeker geen letterlijke vertaling en ook hier en daar duidelijk afwijkend, vindt zijn basis in een publicatie van Hughes en Callebaut geschreven in het kader van de werkzaamheden van RILEM commissie TC 167 Characterisation of Old Mortars.

De mogelijkheid om historische gebouwen te bemonsteren hangt in de praktijk van veel factoren af. Er zijn de nodige randvoorwaarden en beperkingen, die worden bepaald door de historische waarde van het object. Waar mogelijk zal geïntrigeerd moeten worden *niet-destructieve* dan wel *zo weinig mogelijk destructieve methoden* van onderzoek toe te passen. Niettemin zal vaak toch enige bemonstering nodig blijken te zijn, bijvoorbeeld om tot een diagnose van de oorzaak van schade of tot een advies voor een compatibele reparatiemortel te komen. In het algemeen zal de hoeveelheid monsters en monstermateriaal echter klein zijn evenals de omvang van de monsters.

Heel belangrijk is dat van tevoren duidelijk komt vast te staan welke problemen moeten worden onderzocht en waar en welke monsters zullen worden genomen. Dit kan gebeuren om hypothesen met betrekking tot de oorzaak van schade
te verifiëren, maar zou ook kunnen op basis van zuiver documentaire doelstellingen. In alle gevallen zal echter een grondige visuele analyse of inspectie de grondslag moeten vormen voor het bemonsteringsplan.

Bemonsteren kan in dit kader worden gedefinieerd als het permanent verwijderen van materiaal van een gebouw of constructie met het doel om te komen tot een analyse of een karakterisering van dat materiaal. Het bemonsteren van historische mortels heeft gewoonlijk een analyse ter ondersteuning van een ingreep of wetenschappelijke documentatie als achtergrond. Echter, wat het doel ook is, de kwaliteit van de conclusies hangt af van de kwaliteit en relevantie van de genomen monsters. Een visueel vooronderzoek en de daarop volgende bemonstering vormen een essentieel onderdeel van de totale analyse en dienen daarom met dezelfde zorg te worden omgeven als de analyse aan de monsters in het laboratorium.

Uiteraard dienen beschadigingen ten gevolge van het bemonsteren tot een minimum te worden beperkt. Gaten ontstaan door het bemonsteren dienen, zeker wanneer het gaat om muurconstructies, zo onzichtbaar mogelijk hersteld te worden.

Daar waar sprake is van waardevolle muurschilderingen, zoals te zien is in figuur 35, is het bij uitstek noodzakelijk om omzichtig te werk te gaan. De voorzichtigheid mag echter niet het geven van een goed onderbouwd antwoord belemmeren, zeker wanneer belangrijke instandhoudingstechnische ingrepen noodzakelijk zijn. Te weinig onderzoeken zou kunnen leiden tot ingrepen die vele malen schadelijker zijn voor de historische substantie, dan de geringe schade door het bemonsteren.

Zeker waar het vooral gaat om het bemonsteren voor documentaire doeleinden, dient men er zich van bewust te zijn dat de studie aan historische mortels interdisciplinair van karakter is en dat verschillende betrokkenen (architect, conservator, eigenaar…) ook verschillende motieven kunnen hebben.

Zoals al eerder gezegd, vindt bemonstering plaats in een aantal stappen. Deze zijn:
– vaststellen van de doelstellingen,
– visuele analyse van de situatie en de constructie (materialen, bouwfasen),
– keuze van de wijze van bemonsteren,
– keuze van de analyse methode(n) en tenslotte
– het bemonsteren.

185 Hughes 2000.
Hierna wordt nader ingegaan op de verschillende stappen.

Vaststellen van de doelstellingen

Een mortelonderzoek kan twee verschillende hoofddoelstellingen hebben:
- de combinatie van de analyse van aantasting (schade) en het komen tot een verantwoorde wijze van instandhouding of reparatie (bijvoorbeeld het vinden van een compatibele reparatiemortel),\(^{187}\)
- documentatie, als een vooral *archeologische* studie naar mortelsamenstelling vanuit historische, culturele en technologische achtergronden.

In beide benaderingswijzen kunnen de mortels worden bestudeerd met technieken die kunnen variëren van een visuele analyse met het blote oog tot geavanceerde laboratoriumanalyses, bijvoorbeeld met behulp van Raster Elektronen Microscopie. Hierbij verandert de schaal waarop wordt gewerkt van meters [m] naar micrometers [\(\mu m\)].

Als achtergrond wordt verder ook verwezen naar het artikel *Mortar characterisation, from values to compatibility*,\(^{188}\) waar vanuit restauratiefilosofische achtergrond op de wijze van bemonsteren en analysetechnieken wordt ingegaan.

Visuele analyse van de situatie en de constructie

Kennis omtrent het gebouw, de constructie en de situatie is een van de belangrijkste randvoorwaarden voor een succesvolle bemonstering en een succesvolle analyse van eventuele problemen.

Tabel 10

Vergelijking van de beide hoofddoelstellingen van mortelanalyse

<table>
<thead>
<tr>
<th>Doel bemonsteren</th>
<th>Gezochte informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schadeanalyse, conservering, restauratie</td>
<td>Vochtgehalte, zoutgehalte, bindmiddeltype, bindmiddel toeslag verhouding, hardheid, duurzaamheid, vorstbestandheid, druksterkte, porositeit, permeabiliteit</td>
</tr>
<tr>
<td>Documentatie, archeologische achtergronden, productietechnologie</td>
<td>Textuur, structuur, bindmiddeltype, elementen en sporelementen</td>
</tr>
</tbody>
</table>

\(^{187}\) *Van Hees 2000.*
\(^{188}\) *Van Balen 2001.*
De eerste analyse die moet worden uitgevoerd is een visuele inspectie van het gehele gebouw; pas daarna kan de mortel centraal staan. Zo is het van belang om inzicht te hebben in mogelijke verschillende bouwfasen. Dit kan helpen bij het vaststellen welke materialen relevant zijn voor nader onderzoek en bemonstering. Dit is vooral belangrijk in het geval dat variatie in historische materialen en hun ontwikkeling in de loop van de tijd centraal staan. Ook een grondig archiefonderzoek gericht op de bouw en bouwfasen is dan onontbeerlijk.

Ook de schadeanalyse is gebaat bij een zo duidelijk begrip vooraf van de materialen die worden bemonsterd: uit welke bouw fase zijn ze, gaat het om oorspronkelijk materiaal of om latere ingrepen en herstellingen enzovoort. Bij schadeanalyse is het verder van belang dat vanuit de visuele inspectie de voornaamste en meest relevante schadetypen worden vastgesteld en dat vervolgens het onderzoek en de bemonstering daarop wordt geconcentreerd.

De mortels kunnen worden geïnspecteerd na de algemene visuele analyse van het hele gebouw. Bij de visuele inspectie van de mortels kan al het een en ander duidelijk worden nog voor een bemonstering wordt uitgevoerd, zoals:

- vorm van voegen,
- kleur van de mortel (liefst aan een vers breukvlak),
- textuur,
- aanwezigheid van bepaalde (bijvoorbeeld grove of gekleurde) toeslagmaterialen.

Bij de visuele inspectie en bij de daarop volgende bemonstering verdient het aanbeveling een aantal voorzieningen en instrumenten paraat te hebben. Daarbij is het ver-

standig te werken met een standaard opnameformulier, waarin gegevens van het gebouw en de monsters worden opgenomen.

Bij de instrumenten gaat het om:
- fototoestel en verrekijker,
- flesje water, pipet en Karstenbuis,
- rolmaat,
- priem,
- voeghardheidsmeter,
- kleine hoeveelheid zoutzuur (HCl).

En voor eventuele bemonstering:
- hamer en beitel,
- hamerboormachine,
- kernboormachine,
- testset met zoutindicatoren,
- plastic zakjes of potjes met een hoge waterdampdiffusieweerstand,
- watervaste viltstift, krijtjes.

De visuele analyse vormt de basis voor een hypothese omtrent schademekanismen en (verschillen in) materiaalsamenstelling. Als zodanig vormt het de basis voor het opstellen van een bemonsteringsplan.

De hypothesen die werden opgesteld bij de visuele inspectie, moeten worden getoetst met een nader onderzoek. Dat onderzoek en de daarvoor benodigde analyseapparatuur bepalen op hun beurt het type monster en de minimale hoeveelheid materiaal die nodig is. Daarmee vormt de gekozen analysetechniek een belangrijke randvoorwaarde bij het bemonsteren.

In tabel 11 wordt een aantal analysetechnieken genoemd, samen met het gebied waarvoor ze kunnen worden gebruikt (de vraag die ermee kan worden beantwoord) en de minimum hoeveelheid monstermateriaal. In Mörtel und Steinergänzungsstoffe in der Denkmalpflegeootnote{Knöfel 1993.} is aangegeven dat de hoeveelheid monstermateriaal groter moet zijn, naarmate de toeslagkorrels groter zijn.
Tabel 11

<table>
<thead>
<tr>
<th>Vraagstelling</th>
<th>Analysemethode</th>
<th>Minimum hoeveelheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uiterlijk, structuur, textuur, kleur</td>
<td>Visuele, blote oog</td>
<td>Niet van toepassing (in situ waarneming)</td>
</tr>
<tr>
<td>Bindmiddel-toeslag verhouding</td>
<td>Oplossen in zuur</td>
<td>~100 g (niet samenhangend)</td>
</tr>
<tr>
<td></td>
<td>Slijpplaatjes (optische microscopie)</td>
<td>~100 g (samenhangend)</td>
</tr>
<tr>
<td>Korrelgrootteverdeling en kleur toeslag</td>
<td>Oplossen in zuur en zeven (eventueel slijpplaatjes)</td>
<td>~100 g (niet samenhangend)</td>
</tr>
<tr>
<td>Mineralogie / samenstelling toeslag en additieven</td>
<td>Slijpplaatje XRD REM / RMA</td>
<td>~10 g (samenhangend) ~2-5 g (poeder) ~2-5 g (samenhangend)</td>
</tr>
<tr>
<td>Mineralogie bindmiddel</td>
<td>Slijpplaatje XRD REM / RMA</td>
<td>~10 g (samenhangend) ~2-5 g (poeder) ~2-5 g (samenhangend)</td>
</tr>
<tr>
<td>Microstructuur bindmiddel</td>
<td>REM / RMA</td>
<td>~2-5 g (samenhangend)</td>
</tr>
<tr>
<td>Organische materialen</td>
<td>IR spectroscopie AAS</td>
<td>1 g (poeder) 5 g (poeder)</td>
</tr>
<tr>
<td>Concentratie elementen en sporelementen</td>
<td>Ion chromatografie</td>
<td>1 g (poeder)</td>
</tr>
<tr>
<td>Zoutgehalte</td>
<td>Hygroscopisch gedrag</td>
<td>~10 g (poeder)</td>
</tr>
<tr>
<td>Vochtgehalte</td>
<td>Gravimetrisch</td>
<td>~10 g (poeder) ~10 g (samenhangend)</td>
</tr>
<tr>
<td>Permeabiliteit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elasticiteit, hechting mortel</td>
<td>Boorkern (diameter minimaal 60 mm)</td>
<td></td>
</tr>
<tr>
<td>Druksterkte</td>
<td>Voeghardheid</td>
<td>Niet van toepassing (in situ waarneming)</td>
</tr>
<tr>
<td></td>
<td>Vriesproef</td>
<td>Boorkernen stenen met tussenliggende voeg (diameter 50 a 60 mm)</td>
</tr>
</tbody>
</table>

Het is erg belangrijk dat details van de bemonstering, zoals de locatie van de monsters, de staat van conservering (en samenhang) en eventueel het type schade en het doel van het bemonsteren goed worden vastgelegd. Het maken van schetsen en foto’s voor en na het bemonsteren wordt aanbevolen.
Bij het bemonsteren van historische gebouwen zal er zeker geen sprake zijn van een aselecte steekproef, waardoor een statische benadering eigenlijk niet van toepassing kan zijn. Bemonstering zal in het algemeen juist zeer gericht plaatsvinden teneinde specifieke problemen of schadefenomenen, die op basis van de visuele inspectie als relevant voor de instandhouding worden beschouwd, grondig te kunnen analyseren. Het belang van de visuele inspectie, eventueel met ondersteuning van instrumenten als MDDS (het *Masonry Damage Diagnostic System*)\(^{191}\) kan dan ook niet genoeg benadrukt worden.

Vaak zal de laboratoriumanalyse niet worden uitgevoerd door degene die de monsters neemt. Het verdient wel sterke aanbeveling dat de persoon die de monsters neemt goed op de hoogte is van de mogelijkheden en beperkingen van de voorzienige analysetechniek. Om een bemonstering en daaropvolgende analyse tot een goed einde te brengen zijn ervaren medewerkers nodig. Onervaren medewerkers dienen daarom een gedegen opleiding van ervaren collega’s te krijgen.

Bij het bemonsteren dienen de *veiligheid en gezondheid* van de monsternemer goed in acht te worden genomen door:

– veilige steigers en klimmaterieel,
– gebruik van de geëigende persoonlijke bescherming, zoals gehoor- en gezichtsbescherming, een stofmasker, veiligheidslijnen, helm, veiligheidsschoeisel en zo voort,
– in elk geval nooit ondoordachte zaken op grote hoogte uitvoeren.

Conclusies

Ondanks de groeiende beschikbaarheid van instrumenten en technieken voor niet-destructief onderzoek, vormt het bemonsteren vooralsnog een essentieel onderdeel van de analyse van historische gebouwen. Het doel van de bemonstering kan variëren van schadeanalyse tot documentatie en archeologische beschrijving. De doelstellingen van het onderzoek en daarvan afgeleid het doel van de bemonstering dienen van tevoren grondig te worden bepaald. De visuele inspectie en analyse vooraf alsmede overleg met andere betrokkenen (met name de restauratiearchitect en gebouweigenaar) vormen de *conditio sine qua non* voor een verantwoorde doelgerichte bemonsteringscampagne.

\(^{191}\) *Van Balen 1999.*
1.3 Petrografisch onderzoek

Het petrografisch onderzoek is een klassieke onderzoeksmethode uit de geologie, waarbij circa twintig tot dertig micrometer dikke gesteentepreparaten met gebruikmaking van een polarisatiemicroscoop worden bestudeerd in doorvallend wit gepolariseerd licht. Vanwege hun geringe dikte, worden de preparaten *dunne doorsneden* genoemd, of *slijpplaatjes*, omdat zij met een slijproces worden vervaardigd. Bij circa twintig tot dertig micrometer dikte zijn de meeste componenten doorzichtig en kunnen hierdoor worden gedetermineerd. Aldus wordt de mineralogische samenstelling van gesteenten bepaald en hun interne structuur, ofwel *textuur*, worden vastgesteld. Op basis van deze gegevens kan een gesteente worden gedetermineerd.

Een dunne doorsnede wordt als volgt vervaardigd. Van het gesteentemonster wordt een representatief blokje steen afgezaagd, waarvan één van de vlakken een afmeting heeft van 40 x 25 mm. Na droging bij 60°C wordt dit monstertje onder vacuum *geimpregneerd* met een heldere epoxyhars, waaraan een groen fluorescerend pigment is toegevoegd. De impregnering heeft twee doelen. De interne consistentie van het monster wordt ermee verhoogd, zodat het mogelijk wordt het monster te slijpen. De open structuren (barsten, poriën) vullen zich met de fluorescerende hars, waardoor ze goed zichtbaar zullen zijn bij het fluorescentie-onderzoek.

Eén vlak wordt op een glazen plaat met slijppoeders en water vlak geslepen. Na droging wordt dit vlak met een epoxyhars (vroeger met canadabalsem) op een objectglaasje gemonteerd. Wanneer de hars is uitgehard wordt zoveel mogelijk gesteente weggezaagd, parallel aan het objectglaasje. Dan vangt het slijproces aan. Met steeds fijner wordende slijppoeders op een glazen plaat wordt het preparaat op zijn vereiste dikte van circa twintig tot dertig micrometer gebracht (zie figuur 34). Vervolgens wordt het preparaat met een dun glazen plaatje en met epoxyhars afgedekt. Het slijpplaatje is nu gereed voor het petrografisch onderzoek. Tegenwoordig wordt dit proces uiteraard zoveel mogelijk machinaal uitgevoerd.

Deze techniek kan ook worden toegepast op andere materialen dan natuursteen, waaronder *mortels* en *baksteen*. Het petrografisch onderzoek aan kalkmortels wordt uitgevoerd aan *ongestoorde monsters*, die veelal met gebruikmaking van een holle diamantboor uit een object werden gehaald.

Het petrografisch onderzoek wordt uitgevoerd in *doorvallend wit* gepolariseerd licht. Zodoende zijn de componenten van de mortel te determineren en is de verhouding tussen de hoeveelheid bindmiddel en toeslagzand (of ander verschralingsmiddel)
vast te stellen. Ook degradatie- en rekristallisatieverschijnselen van de mortel zijn op deze manier te onderzoeken. Uit de boorkernen worden daartoe deelmonster-tjes geselecteerd, die vervolgens met een diamantzaag uit de kernen worden gezaagd.

Het onderzoek wint aan informatiegehalte wanneer het contactvlak van de mortel met de baksteen, of natuursteen, in het deelmonster aanwezig is. Hierdoor is informatie te verkrijgen over het soort (bak)steen en over het contact tussen mortel en steen. Wanneer voegmortels petrografisch worden onderzocht, stellen we daarom als eis, dat het contactvlak tussen steen en metselmortel in het preparaat aanwezig is.

Na onderzoek in wit licht, worden de preparaten onderzocht in *doorvallend violet* licht met een golflengte van 310 nm. Daarbij is in de lichtweg een sperfilter opgenomen als compensator voor het verstrooide violette licht. Het microscoopbeeld is dan vrijwel zwart, want alleen de open structuren zijn nu zichtbaar als groen fluorescerende fenomenen. Ook de *microporositeit*, resulterend in capillaire eigenschappen van de mortel, is dan zichtbaar, als een diffuus fluorescerend fenomeen. Slechts de *aanwezigheid* van capillaire poriën kan hiermee worden aangetoond. De *grootte* van de poriën kan echter niet met deze optische methode worden bepaald. Daarvoor zijn andere technieken beschikbaar, bijvoorbeeld kwikporosimetrie, waarbij de microporiën met kwik worden gevuld of stikstofporosimetrie. Wel goed zichtbaar zijn de grote poriën, ofwel de *macroporiën*. Dit zijn poriën die niet bijdragen aan het capillaar transport van water door mortel. Doordat open structuren bijvoorbeeld ook kunnen ontstaan ten gevolge van uitloging van het bindmiddel, zijn tevens degradatieverschijnselen duidelijk te diagnosticeren.

Het petrografisch onderzoek in combinatie met het fluorescentieonderzoek aan kalkmortels is derhalve een onderzoekstechniek aan samenhangend materiaal, waarbij de samenstelling van de mortel kan worden bepaald en gegevens kunnen worden vergaard over de open structuren, al dan niet van secundaire oorsprong in de vorm van degradatieverschijnselen. Deze techniek wordt toegepast bij het inventariseren en beschrijven van *historische mortels*.

PFM-onderzoek aan historische mortels

In geval van historische mortels kan bovendien met het petrografisch onderzoek worden bepaald welke *soort kalk* is gebruikt: hydraulische steenkalk, of niet hydraulische luchtkalk. In hydraulische kalk zijn vaak nog reliëf aanwezig van hydraul-
Kalk in de restauratiepraktijk

tsche mineralen die niet met water hebben gereageerd en hierdoor niet zijn verteerd
door de reactie. Bovendien zijn vaak kalkklontjes aanwezig die niet goed gemengd
zijn met zand. Deze klontjes zijn vaak het gevolg van het droog blussen van kalk,
waarbij nat zand aan de ongebluste kalk werd toegevoegd.

Naast relicts van hydraulische mineralen worden in geval van trashoudende kalk-
mortels ook relicts aangetroffen van trasdeeltjes, die niet door puzzolane reacties
met de vrije kalk en water zijn verteerd. Deze relicts betreffen fijne deeltjes van
vulkanische tuf, de grondstof van tras. In deze deeltjes zijn dan ook kenmerkende
vulkanische mineralen aanwezig.

Historische kalkmortels kennen vaak verouderingsverschijnselen, zoals plaatselijk uitge-
spoeld bindmiddel door watertransport door de mortel. Ook zijn vaak mineralologi-
sche bewijzen voor het zelfhelende karakter van kalkmortels aanwezig in de vorm
van gerekristalliseerde kalkbanen, veelal bestaande uit kristallen van calciumcarbo-
naat (‘Kr’ in figuur 19 en figuur 41).

In geval van zoutbelaste mortels kunnen soms in open poriën nog kristallen
aanwezig zijn van bouwschadelijke zouten. Hierbij moet men wel bedenken dat de
bouwschadelijke zouten wateroplosbaar zijn en dat bij het slijpproces tijdens de
vervaardiging van de dunne doorsneden water wordt gebruikt. Wanneer de bouw-
schadelijke zouten een onderwerp van studie zijn, moeten de dunne doorsneden voor
het behoud van de zouten vervaardigd worden met olie in plaats van met water.

Aanvullend onderzoek aan historische mortels

Fenomenen op submicroscopische schaal (te klein voor optische microscopie) zijn
echter niet met boven omschreven technieken te onderzoeken. Dan is aanvullend
elektronenmicroscopisch onderzoek en eventueel specifiek mineralogisch onder-
zoek noodzakelijk, uiteraard afhankelijk van de doelstelling van het onderzoek.

Een voorbeeld van specifiek mineralogisch onderzoek is het PFM-onderzoek aan
baksteen. Het petrografisch onderzoek aan bakstenen richt zich hoofdzakelijk op de
porositeit van de stenen. De componenten kunnen weliswaar worden gedetermine-
neerd, maar deze gegevens zijn louter interessant voor bouwhistorisch onderzoek,
in verband met de toepassing van lokaal gewonnen klei en zand. De bakstenen die
gebraukt worden voor restauratie hoeven immers niet volgens oude receptuur te
worden gebakken, maar zij moeten wel – in verband met de vereiste compatibiliteit
– een met de historische bakstenen overeenkomstige poriestructuur bezitten.
Ten behoeve van de keuze van *bakstenen voor inboetwerk* in historisch metselwerk moet vastgesteld worden welke soort porositeit in de historische steen bepalend is. Inboeten met klinkers in een in zacht gebakken rode steen uitgevoerd metselwerk is strijdig met het principe van de compatibiliteit en leidt tot een niet duurzaam herstel. Met PFM-onderzoek aan de historische bakstenen zijn dergelijke foutieve materiaalkeuzen te vermijden.

Een van de belangrijke eigenschappen van (bak)steen met betrekking tot de compatibiliteit is de vrijwillige wateropname. De snelheid waarmee de (bak)steen water opneemt is afhankelijk van de zuigkracht van de steen en de waterretentie van de mortel.

De zuigkracht van de steen wordt bepaald door de poriënverdeling en de porositeit. De eerste bepaalt de kracht van de zuiging (de *capillaire potentiaal*). In het algemeen leiden smallere poriën tot een grotere zuigkracht dan brede poriën. De totale porositeit is bepalend voor de totale hoeveelheid water die via zuiging kan worden geborgen en zo aan de mortel kan worden onttrokken. Traditioneel werd de kwaliteit van de (bak)steen getest door het klinken van de baksteen. De toonhoogte van het geluid wordt bepaald door de porositeit en de hardheid en hangt daardoor samen met de baktemperatuur, die op zijn beurt de kans op de aanwezigheid van fijne poriën bepaalt. Een ervaren metselaar kan dus uit het *klinken* van stenen informatie vergaren over de aard ervan.

Het opzuigen van water uit de mortel kan uiteraard ook worden verminderd door de baksteen op voorhand te bevochtigen, een praktijk die sinds lang wordt gebezigd.

Wetenschappelijke analytische technieken stellen ons in staat de kwaliteit van de (bak)steen met meer nauwkeurigheid en meetbaar te bepalen. Het bepalen van het Hallergetal (dat overeenkomt met de hoeveelheid water die een steen per vierkante decimeter in één minuut opzuigt) kan daarbij helpen. Dit is een relevante en makkelijk te bepalen grootheid. De laatste jaren wordt ook meer PFM-onderzoek gedaan omdat deze techniek ons in staat stelt de poriënverdeling en de porositeit rechtstreeks te bepalen. Deze techniek kan betrouwbare cijfers met betrekking tot de porositeit leveren binnen de grenzen die worden gesteld door de maximale vergroting die kan worden bereikt.

Naast de hiervoor beschreven microscopische methoden ter bepaling van de mortelsamenstelling staan ook nog de *traditionele onderzoeksmethoden* ter beschikking (zie § 1.4). De meeste historische mortels hebben kalk (portlandiet) als bindmiddel en soms bevatten ze toevoegingen van bijvoorbeeld tras. Een probleem dat daarbij kan spelen is dat met de traditionele (fysisch)-chemische analysemethode geen goed
onderscheid is te maken tussen kalk uit het bindmiddel en kalk uit de toeslag. In
dergelijke mortels is vaak meer dan één soort toeslagmateriaal gebruikt. Ervaring
met PFM-onderzoek leert dat de toeslag in veel gevallen bestaat uit een mengsel
van kwartszand (lost niet op in zuur) en fragmenten kalksteen, schelpen of fossiel-
len. Soms bestaat zelfs een aanzienlijk aandeel van de toeslag uit kalksteenfrag-
menten. Met name in dergelijke gevallen is de bepaling van de samenstelling met
behulp van de traditionele methode uiteraard onbetrouwbaar.

Een analyse met een optische microscoop, gebaseerd op bijvoorbeeld het uitvoe-
ren van point-counting192 van geïmpregneerde dunslijppreparaten, is een zeer ge-
schikte methode om de samenstelling en karakteristieken van een historische mor-
tel vast te stellen.

Die methode is in principe onafhankelijk van type en samenstelling van zowel
toeslag als bindmiddel. Naast de kwantitatieve bepaling van de mortelsamenstelling,
is een groot voordeel dat deze techniek het ook mogelijk maakt soort en omvang
van de samenstellende delen te bepalen en het vaak daarnaast ook nog mogelijk is
om de oorzaken van aantasting van de mortel vast te stellen. In het geval van de
traditionele (fysisch)-chemische analyse kan eigenlijk nauwelijks rekening worden
gehouden met de effecten van in de loop der jaren opgetreden aantasting. De aan-
tasting wordt niet zichtbaar gemaakt, maar ook de effecten van de aantasting op
bijvoorbeeld de bindmiddel-toeslagverhouding komen niet aan het licht.193

192 Het gehalte aan de belangrijkste, mineralogische bestanddelen van het te onder-
zoeken toeslagmateriaal moet kwantitatief worden vastgesteld met behulp van een
point-counting systeem dat gekoppeld dient te worden aan de microscoop. Bij deze
techniek wordt het slijpplaatje van het te onderzoeken materiaal eerst gemonteerd
op een speciale tafel die de mogelijkheid heeft tot kruiselingse beweging en waar-
bij een constant raster gegarandeerd is. De tafel is gekoppeld aan een elektroni-
sche teltoets. Op de teltoets is een aantal kanalen of toetsen die kunnen worden
gebruikt om de te kwantificeren componenten in het slijpplaatje te vertegenwoor-
digen. Bij het indrukken van de teltoets wordt het preparaat automatisch over een
bepaalde afstand verschoven langs een vastgelegd traject. Bij elke beweging iden-
tificeert de laborant het object in het centrum van het kruisdraad van de micro-
scoop en drukt hij op een toets of kanaal die overeenstemt met het waargenomen
object. Deze procedure wordt herhaald tot het eind van het traject, tot uiteindelijk
het gehele preparaat is geanalyseerd. Het totaal aantal punten dat geteld is over
het gehele preparaat en dat voor de afzonderlijke bestanddelen worden tegelijkert-
tijd geregistreerd. Deze worden uitgedrukt in volumepercentages. De telling dient
uitgevoerd te worden bij een honderdvoudige vergroting.

Indien de kruisdraad zich precies op de grens van een korrel met de hars bevindt,
dan wordt dat punt als toeslag geteld bij het ingaan van de korrel en als hars bij
het uitgaan van de korrel.

Aangezien een groot aantal punten in de korrels geteld moet worden, moet het
raster (het regelmatige rooster) dusdanig gekozen worden dat het gehele opper-
vlak van het preparaat onderzocht wordt. Voor een gebruikelijke slijpplaatje van
ongeveer 50 mm x 30 mm wordt een raster van 0,5 x 0,5 mm gehanteerd.

193 Larbi 2000.
1.4 Chemisch en fysisch onderzoek

Natchemisch onderzoek

Traditionele onderzoeksmethodes zijn natchemische analyse (bepalen oplosbare ionen), de bepaling van de korrelgrootteverdeling van het zand, het bepalen van de open porositeit van de mortel door wateropname onder vacuum en het bepalen van de druksterkte (indien de grootte van de monsters dat toelaten). Deze technieken worden veelal aangevuld met chemisch-analytische technieken zoals Atomaire Absorptie Spectrometrie (AAS) en Atomaire Emissie Spectrometrie (AES) (zie figuur 25 rechts).

Voor een (nat)-chemische analyse wordt het mortelmonster verbrijzeld, waarna een zuur wordt toegevoegd om het bindmiddel op te lossen. In de literatuur worden verschillende chemische analysemethoden voor kalkmortels gevonden, maar deze zullen hier niet allemaal besproken worden.194 Al deze analysemethoden bestaan fundamenteel uit het oplossen van het bindmiddel en bepaling van de verschillende oxiden in het filtraat. Er wordt hierbij verondersteld dat alleen het bindmiddel oplost. Daarom moet op voorhand nagegaan worden of er eventueel oplosbare componenten in de aggregaatfractie zitten, zoals bijvoorbeeld gemalen kalksteen. De verschillen tussen de methoden betreffen onder andere de concentratie van het zuur, het type zuur en de gebruikte analysemethoden. Hier zal als voorbeeld de analysemethode besproken worden, zoals die door Callebaut c.s. is voorgesteld.195 Dit voorstel is op basis van een uitgebreid literatuuronderzoek en vergelijking van verschillende bestaande analysemethoden opgesteld. De onoplosbare aggregaatfractie blijft achter na filtratie op het filterpapier en geeft een idee over de hoeveelheid onoplosbaar aggregaat (IR in figuur 39). Het type aggregaat kan bepaald worden met een mineralogische analyse op dit onoplosbaar residu, bijvoorbeeld met XRD. Om het kalkbindmiddel te karakteriseren wordt meestal zoutzuur (HCl) gebruikt om de mortel op te lossen. Alle calciet in het bindmiddel lost hierbij op (maar ook het oplosbare deel van het aggregaat) en met behulp van verschillende analysemethoden zoals AAS, AES en ICP-MS kan de hoeveelheid aan de verschillende oxiden (CaO, MgO, Al\textsubscript{2}O\textsubscript{3}, …) berekend worden. Er bestaat nog geen genormaliseerd zuur (concentratie en soort zuur) om kalkmortels chemisch te analyseren. Verschillende laboratoria gebruiken verschillende zuren, waarbij een ge-

195 Callebaut 1999.
bruikelijke samenstelling bestaat uit één deel geconcentreerd zoutzuur en negen delen gedistilleerd water. Met dit zuur zal het inerte aggregaat niet opgelost worden en kan men dus het bindmiddel karakteriseren. Het gehalte aan de verschillende oxididen (CaO, MgO, Al₂O₃, Fe₂O₃) in het bindmiddel wordt in deze studie bepaald met behulp van AAS (figuur 39). Analyse van het CO₂-gehalte in de mortel (met onder andere volumetrie en thermogravimetrie) geeft een idee over de hoeveelheid carbonaten die aanwezig is in de mortel. Bij deze chemische analyse moet wel verdooden worden dat oplosbare aggregaten ook opgelost worden, zodat op voorhand, bijvoorbeeld met petrografie, nagegaan moet worden of er veel kalksteen of andere carbonaten in de aggregaatfractie aanwezig is. Het gehalte aan carbonaten wordt doorgaans bepaald met behulp van volumetrie van het geproduceerde CO₂ (figuur 40). De hoeveelheid oplosbaar SiO₂ geeft een idee over de hydrauliciteit van de kalkmortel. Met zoutzuur zullen de hydraulische silicaten oplossen en de hoeveelheid SiO₂ kan geanalyseerd worden in het filtraat. Aan de hand van deze analyse kan de hydrauliciteitsindex (H.I.) zoals destijds bepaald door Vicat⁹⁶ worden berekend. Deze index is de verhouding van de oplosbare zure tot de alkalische bestanddelen. In 1966 definiëerde Boynton⁹⁷ de cementation index (C.I.), die een correctie op voorgaande term is:

\[
C.I. = \frac{2,8 \times \% SiO_2 + 1,1 \times \% Al_2O_3 + 0,7 \times \% Fe_2O_3}{\% CaO + 1,4 \times \% MgO}
\]

Mortels kunnen zodoende in verschillende hydrauliciteitsklassen worden onderverdeeld, van niet-hydraulisch (C.I. < 0,3) over zwak hydraulisch (0,3 < C.I. < 0,5) en gematigd hydraulisch (0,5 < C.I. < 0,7) tot sterk hydraulisch (0,7 < C.I. < 1,1).

Bij de chemische analyse kan ook de hoeveelheid oplosbare ionen in water bepaald worden. Deze geven een idee over de hoeveelheid secundaire zouten die gevormd zijn in de kalkmortel. Het monster wordt hierbij verbrijzeld en gedistilleerd water wordt toegevoegd. De hoeveelheid oplosbare ionen (vooral K⁺, Na⁺, Cl⁻, SO₄²⁻) in het filtraat geeft weer hoeveel secundaire chloriden of sulfaten er gevormd zijn. In de studie van Callebaut en de zijnen wordt spectrofotometrie gebruikt om de hoeveelheid oplosbare ionen te bepalen.

Een alternatieve wijze om de aanwezigheid van zouten te bepalen is het meten van de elektrische geleidbaarheid van oplossingen van het materiaal. Dit geeft echter geen informatie over de aard van de zouten. Het is vooral een nuttige (snelle

⁹⁶ Vicat 1837.
⁹⁷ Boynton 1966.
Figuur 39

Figuur 40

en goedkope) methode om een eerste indicatie te verkrijgen. Een andere goedkope en snelle methode die hiervoor wordt gebruikt is de bepaling van de hygroscopische vochtopname.

De karakterisering van kalkmortels mag echter nooit alleen gebeuren op basis van de hierboven beschreven chemische analyse. Resultaten van de verschillende

198 Bij deze methode wordt 5,00 g fijngestamppte mortel opgelost in 50 cc gedestilleerd water. Met een eenvoudig apparaatje kan hiervan vervolgens de (elektrische) geleiding van het water (in µS/cm) worden bepaald. Dit maakt het mogelijk om snel een eerste indicatie van de zoutbelasting te verkrijgen, want het zijn immers vrije ionen als K⁺, Na⁺, Cl⁻, SO₄²⁻, die de geleiding van water bepalen.

Kalk in de restauratiepraktijk

Analysemethoden (petrografie, chemische analyse, XRD enzovoort) moeten samen worden bekeken om tot een volledige en correcte interpretatie van de historische mortel te komen. De aanwezigheid van kalksteen in de aggregaatfractie zal bijvoorbeeld niet aangetoond kunnen worden met een chemische analyse, aangezien de kalksteenaggregaten eveneens oplossen met zoutzuur. Alleen met een aanvullende analyse, zoals petrografie, kan worden bepaald of er eventueel kalksteen in de aggregaatfractie zit. Individuele minerale componenten, zoals secundair ettringiet, worden ook niet ontdekt, wanneer alleen een chemische analyse wordt uitgevoerd. Bij de bepaling van de oplosbare ionen in water zal dan wel een verhoogde hoeveelheid sulfaat aangetoond worden, maar het type sulfaat kan niet bepaald worden. Met bijvoorbeeld XRD kan het type sulfaat wel gekarakteriseerd worden.

2 Ethische en esthetische aspecten (te stellen eisen)

In het eerste hoofdstuk is al het nodige aangegeven over de ethische aspecten van het restaureren in het algemeen en van het gebruik van kalk daarbij in het bijzonder. In het kader van de toepassing van kalk in de praktijk wordt hier dieper op dit thema ingegaan. Uiteindelijk is de conservator er niet alleen verantwoordelijk voor dat de te stellen eisen door het verrichten van wetenschappelijk onderzoek en het documenteren nader worden bepaald, hij zal ze ook in ethisch opzicht moeten wegen en heeft tot taak ze in de praktijk toe (laten) passen.

Om de juiste mortelsamenstelling te bepalen, zal men een aantal stappen moeten doorlopen. We beginnen met het vaststellen van de waarden van het object, van de authenticiteit. Vervolgens bepaald de ethiek, welke (conceptuele) eisen er aan een mortel gesteld moeten worden. Functionele en technische eisen bepalen vervolgens het ontwerp van de mortelreceptuur. Dit denkschema is in beeld gebracht in figuur 42.

\[201\] Van Balen 2003.
Het is zeker mogelijk om in Nederland en België eeuwenoud voegwerk te vinden. Toch geldt voor het merendeel van de oudere gevels dat het voegwerk in de loop van de tijd één of meer keren is vervangen. Zo is vaak verloren gegaan, wat voor ons een kostbaar document van het verleden had kunnen zijn.

De voegen zijn vaak de eerste onderdelen van het gevelmetselwerk die aan vernieuwing toe zijn. In het kader van het onderhoud ontkomt men daar niet altijd aan, omdat voegen in een *aan regen en wind blootgesteld* deel van de gevel in een redelijke staat moeten verkeren in verband met de waterdichtheid van het metselwerk. Als basisprincipe moet weliswaar gelden dat het overgeleverde, historische materiaal behouden moet blijven,\(^\text{202}\) als een slechte staat van de voegen zal uitmonden in

\(^{202}\) Voegen vervangen we in principe dus alleen daar waar – en voor zover als – deze zijn aangetast en deze aantasting *ernstig* nadelig is (technisch of esthetisch). Aan de waterdichtheid van een voeg moet daarbij ook niet overdreven veel waarde worden toegekend. Het is niet zo dat een voeg met een dikte van ongeveer een centimeter een gevel waterdicht kan maken, als die niet vol en zat gemetseld is. Als een gevel wel vol en zat gemetseld is, is de bijdrage van de voeg aan de waterdichtheid ervan marginaal. Herstel van voegen kan dus aan de waterdichtheid bijdragen, maar is zeker niet het wondermiddel waarvoor velen het houden.
Kalk in de restauratiepraktijk

verdere gevolgschade aan de gevel, dan zal men het oude voegwerk moeten vervangen teneinde de rest van de gevel te kunnen behouden.

2.1 Ethische noties uit de praktijkervaring

Het is niet altijd noodzakelijk om het doorstrijkwerk of voegwerk te vervangen en nog minder vaak om álles te vervangen. Een nauwkeurig technisch onderzoek zal tonen welke delen kunnen worden behouden. Maar als maar een deel van het voegwerk wordt vervangen, komt daaruit vaak een esthetisch probleem voort. Er moet immers worden vermeden, dat een zogenaamd patchwork effect ofwel een vlekkerig beeld ontstaat.

Vaak springen de nieuwe voegen, in een wat andere kleur dan de oude, duidelijk naar voren, het verschil met de rest van de muur onderstrepend. In sommige gevallen is de hinder ten gevolge van dit kleurverschil beperkt. Zeker wanneer de nieuwe voegmortel een materiaalsamenstelling heeft die gelijk is met die van het bestaande werk is dat verschil maar voor een beperkte tijd in het oog lopend. Na een paar jaar zijn ook de nieuwe voegen zo verkleurd, dat ze nauwelijks opvallen. Aan de andere kant zijn er ook tal van situaties waarin deze opvallende reparaties het architectonische beeld verstoren, soms ook langdurig. Dit patchwork is geen bedoeld, of gezocht effect en er is niets op tegen om het te voorkomen. Dat kan door de reparaties qua kleur aan te passen aan de omringende, reeds verouderde voegen. Beter nog is het – zoals hiervoor reeds is betoogd – de voegen naderhand (op reversibel wijze) bij te kleuren.

Het kleurprobleem speelt echter veelal ook, wanneer er helemaal geen sprake is van partieel herstel, maar alle voegen worden vervangen. De baksteen is dan immers vaak nog wel vergrijsd en gepatineerd. Voegen in een verse kleur detoneren binnen dat geheel en vragen onbedoelde aandacht. Door een meer getemperde, vergrijste kleur voor de voegen te kiezen krijgt men een situatie die meer in evenwicht is en waarbij het metselwerk een harmonieuzer uiterlijk heeft.

In het geval dat een gehele gevel (pand) wordt hervoegd, zou men er naar moeten streven om een kleine oppervlakte van oud doorstrijk- of voegwerk als document te behouden. Uiteraard kiest men daarvoor het best bewaarde deel, op een wat beschutte locatie, waar het materiaal niet veel te lijden heeft van weer en

203 Het merendeel van deze voorbeelden is ontleend aan bijdragen van S. Naldini en R.P.J. van Hees aan Van Hees s.a.

204 Dit is onder andere gebeurd bij het herstel van het voegwerk van de kerk op het terrein van de Penitentiaire Inrichting De Boschpoort (de ‘koepel’) in Breda; v.m. L.J.A.R. van der Klugt, 2002.
Figuur 43
Links: Het effect van te witte en te geprononceerde voegen in een historische gevel. Rechts: Te groot contrast tussen voegen en baksteen. Rechts is te zien hoe de baksteenhuid inmiddels voor een deel is losgeraakt en daar de kleur van een vers breukvlak in het oog springt. Voor de (esthetische en monumentale) betekenis van het gevelvlak is dit een aanmerkelijk nadeel. © TNO Bouw

Helaas zien we bij hervoegwerk in monumenten te vaak, dat deze lijn niet wordt gevolgd. Niet zelden worden ze van te witte en vaak ook nog te brede en geprononceerde restauratievoegen voorzien (figuur 43). Het contrast met de baksteen is zeer groot. De meeste bakstenen zijn in de loop der tijd donkerder geworden. In figuur 43 links is daarvan een voorbeeld gegeven. Te zien is hoe de oranje,
Kalk in de restauratiepraktijk

op lagere temperatuur gebakken stenen, zijn verweerd. Ze hebben materiaal verloren en tonen de kleur van hun binnenkant. Andere bakstenen zijn vrijwel zwart geworden. Het oorspronkelijk chromatisch beeld is daardoor al verloren gegaan, maar dat is vaak wel acceptabel: het hoort bij de natuurlijke veroudering en zou als de rimpels van een grijsaard moeten worden gerespecteerd. De brede witte voegen zijn daarentegen juist geen toonbeeld van respect, maar creëren slechts een erg onrustig beeld. Ware het voor de harmonie van de gevel niet beter geweest als de aangetaste bakstenen waren gerepareerd en gepatineerd en de kleur van de voeg zou zijn aangepast aan de vergrijzing van de rest van de gevel?

Figuur 44
Boormonster uit de Grote Kerk te Vlaardingen. Te zien is dat het baksteenoppervlak donker is geworden. De voeg waardoor het monster is geboord blijkt bij later herstel te zijn aangebracht; de donkere kleur van de voeg is gekozen om de voeg te laten passen bij de rest van het donker vergrijze gevelopervlak. © TNO Bouw

Er is aangetoond dat sommige schilders, voor het eindeffect van hun werk, op gevolgen van veroudering van de gebruikte kleuren rekenden. Ook de witte voegen worden in de loop van de tijd minder fel. Het met de ingreep ontstane contrast met de stenen zal ook in de loop der tijd verminderen. Of de bouwers in het verleden daarmee al rekening hielden is niet zeker. Op de eeuwigheid van het monument is de tijd, die het door ons gecreëerde contrast aanwezig zal zijn, een peulenschil; zo werd hiervoor al gezegd. Maar aan de andere kant, het kost niet zo veel moeite om de voegkleur wat aan te passen of om de voeg al wat te vergrijzen.

205 VV 1988, passim.
Kalkboek

Figuur 45
Grote Kerk te Vlaardingen op een in 1832 gepubliceerde tekening.

en het contrast daarmee te temperen. Waarom zouden we dan alle aandacht opesen voor onze *mooie nieuwe voegen* en op die manier afleiden van het monument waaraan wij slechts een bescheiden bijdrage hebben geleverd! Het is een wijze van aanpak die zeker niet zonder precedent is, want in de bouwgeschiedenis zijn er aanwijzingen genoeg dat kleur vanaf de Middeleeuwen aangebracht werd om storende verschillen in een gevel weg te werken.

Een recent voorbeeld van een dergelijke *bescheiden* aanpak levert de toren van de Grote Kerk in Vlaardingen. Deze middenachttiende-eeuwse toren, die overigens staat voor een veel ouder kerkgebouw, bezat tot voor kort nog het oorspronkelijke doorstrijkwerk (en vormde daarmee weer eens het bewijs dat dit zelfs in weer en wind de eeuwen kan trotseren). Gezien de technische staat was echter het hervoe-gen noodzakelijk geworden. Oorspronkelijk was hier sprake van witgekleurde voe-

206 *Staal 1986*, pp. 01-1 – 01-14.
Kalk in de restauratiepraktijk

gen, maar zowel de baksteen als de mortel waren sterk vergrijsd; de mortel was zelfs diepzwart geworden. Door de nieuwe voegmortel een bijna zwarte kleur te geven is het beeld van de vergrijsde (eerbiedwaardige) toren in stand gehouden. Het valt niemand op, dat recent de voegen zijn vernieuwd. En is dat niet juist hetgeen we na zouden moeten streven (figuur 44). Het enige bezwaar van deze oplossing is, dat er rekening mee moet worden gehouden als er ooit zou worden besloten om de gevel schoon te maken. Daar hebben wij zelf weliswaar geen enkele behoefte aan, maar we mogen toekomstige restauratoren niet verbieden om daar anders over te denken.

In het geval van baksteenmetselwerk hangt de oorspronkelijke breedte van de voegen nauw samen met de oorspronkelijke bouwstijl. Helaas blijkt dat bij hervoegwerk de voegbreedte vaak aanmerkelijk toeneemt. Soms is dat het gevolg van de verwering van de baksteen, waardoor de hoeken wat zijn afgerond, maar in veel gevallen is dat enkel of voornamelijk het gevolg van het uitruimen van de voegruimte op een niet al te subtiele wijze. De bakstenen worden daarbij beschadigd door onzorgvuldig hakwerk of door het uitslijpen van de voegruimte waarbij soms millimeters van de baksteen worden afgeslepen. Uithakken en uitslijpen zou voorzichtig moeten gebeuren, zodanig dat er geen schade wordt toegebracht aan de baksteen (figuur 46) en er zou op de stenen ook geen tandvlees (resterende laagjes mortel) mogen achterblijven.

Van het gebouw van het koninklijk staldepartement (de Koninklijke Stallen) in Den Haag (figuur 47) werden de bakstenen van het gevelmetselwerk bij de bouw zeer dicht op elkaar gelegd, praktisch zonder verticale voegen. Bij de restauratie die aan de jongste herstelwerkzaamheden vooraf ging werd opzettelijk meer ruimte tussen de stenen aangebracht, om daar stootvoegen te kunnen toepassen. In technische zin was dat echter geenszins noodzakelijk (naaldvoegen, soms op het oog zelfs zonder mortel ertussen, vormen zelden of nooit een technisch probleem, zolang de gevel maar niet wordt gehydrofoberd). Ook in esthetisch opzicht is deze ingreep te betreuren. Juist het zeer zorgvuldige metselwerk met zeer smalle stootvoegen, die overigens in dit geval wel degelijk allemaal met mortel waren afgedekt, hoort immers bij het beeld dat de architect van oorsprong voor ogen stond.

208 Na een hydrofobering gaat een dergelijke gevel werken als een geperforeerde regenjas; door de kleine gaatjes van de stootvoegen komt ongeveer evenveel water binnen als voor de behandeling door de gehele gevel. Door de aanwezigheid van het waterafstotende preparaat kan de gevel echter veel minder goed drogen. Per saldo wordt de gevel door een dergelijke behandeling alleen maar natter.
Het ware dus beter geweest, wanneer men het metselwerk had gelaten zoals het was en alleen de slechte lintvoegen zou hebben hersteld.

Wanneer er sprake is van te brede voegruimten of wanneer de randen van de stenen door verwering of onzorgvuldige behandeling in het verleden zijn afgeboerd of afgerond, kan men niet altijd het voorbeeld van de historische voegen navolgen. Dit is het geval wanneer het oppervlak van de originele voeg gelijk lag met het oppervlak van de baksteen of daar slechts zeer weinig binnen lag. Hervoegt men op overeenkomstige wijze, dan zal de voeg in het aanzicht niet alleen een onregmatige, maar ook een te grote breedte krijgen (figuur 48). Het is in dergelijke gevallen vaak beter het voegwerk iets verder terug te leggen. De breedte in aanzicht wordt daardoor meestal al heel wat regelmatiger en smaller en bovendien is het voegwerk daardoor minder opvallend.

Als men naar de historie van de afwerking van de voegen kijkt, ziet men er een streven naar regelmaat en strakheid in het metselwerk. Vanaf de zeventiende
Figuur 48
Linksboven: Onvakkundige voegwerkreparatie (verkeerde, te harde mortel, te ondiep uitgehaalde voegruieste, voegmortel over de baksteen uitgesmeerd). Rechtsboven: Ook hier oogt de voeg te breed. Wanneer de voeg iets terug was gelegd ten opzichte van het steenoppervlak, zou de voegbreedte in aanzicht veel beter in verhouding zijn. © TNO Bouw
Onder: Links een schets van oorspronkelijk voegwerk, midden het effect dat men krijgt als de voeg, nadat door veroudering en beschadiging de hoeken van de steen zijn afgerond, opnieuw gelijk met het steenoppervlak wordt aangebracht en rechts het effect dat men krijgt wanneer in die situatie voor een terugliggende voeg wordt gekozen.

De zogenaamde hofboerderij in Wateringen, ooit een kasteeltje, is door verschillende bouwfases gegaan, tot de laatste restauratie in 1983. Van die restauratie zijn de sporen duidelijk te ondernemen, bijvoorbeeld naast de ramen van de voor-gevel. Daar is nieuwer metselwerk zichtbaar, aansluitend op het oudere. Het oudere voegwerk is evenwel van een daggestreek voorzien, die echter niet is doorgezet in het nieuwe gedeelte (Figuur 49). Dit kan natuurlijk worden gewaardeerd als een duidelijk bouwspoor, waardoor dit nieuwere metselwerk van het oudere is te onderscheiden, maar dit bouwspoor gaat waarschijnlijk terug op een minder welover-
wogen gedachtetegang. Aangenomen mag worden dat het hier gewoon een onzorgvuldigheid betreft.

In de wereld van de monumentenzorg wordt getreurd over de usance om zeventiende-eeuws metselwerk bij een restauratie van een snij- of een knipvoeg te voorzien. De snijvoeg is echter eerst in de achttiende eeuw ontwikkeld en de knipvoeg, die overigens altijd meer uitzondering dan regel is geweest, is pas aan het eind van de negentiende eeuw ontstaan. Figuur 50 geeft een voorbeeld van een restauratie, waarbij geen rekening met de geschiedenis werd gehouden, en die dus absoluut niet filologisch is, niet past binnen het historische beeld. (Voor knipvoegen, die vaak voor het gevelvlak uitsteken of soms zelfs over het baksteenoppervlak zijn gezet, geldt bovendien dat deze zeer kwetsbaar en derhalve weinig duurzaam zijn.)

Dergelijk werk getuigt niet alleen van een slechte smaak, maar ook van een volstrekt onbegrip met betrekking tot het oude ambacht. Het omgaan met monumenten vraagt van de restaurator vooral, dat deze naar die monumenten luistert, probeert te achterhalen wat deze ons te zeggen hebben. Heeft men die attitude, dan zal men niet zo snel fouten van dit formaat maken.

2.2 Conclusies

De uitstraling van een gevel wordt in belangrijke mate door de vorm (het type) en de kleur van het voegwerk bepaald. Net als muurschilderingen, zijn gevels gevoelig voor de veranderingen in smaak, stijl, cultuur, restauratieopvattingen en -technieken, die in de loop van de tijd plaatsvinden. De voegen in een pand kunnen door de jaren heen een ander uiterlijk dan het oorspronkelijke hebben gekregen. Bij gevelrestauraties en hervoegwerk moet daarmee rekening worden gehouden.

Duidelijke voorbeelden van restauraties waarbij vooral naar de materiële authenticiteit wordt gekeken zien we vaak bij muurschilderingen. De sporen van alle restauraties die van meet af aan hebben plaatsgevonden worden daarbij verwijderd om tot de originele documenten te komen. De bestaande en daarbij ontstane lacunes worden vervolgens zodanig beschilderd, dat ze als lacunes herkenbaar blijven, maar het genieten van het geheel niet hinderen. Hoewel een dergelijke aanpak niet als algemeen voorbeeld voor voegwerkherstel zou mogen gelden, kunnen we er wel veel van leren. Zeker dat het nodig is om éént een nauwkeurig beeld van het verleden te vormen, zodat dit als referentie kan dienen voor de eventuele reconstructie van het oorspronkelijke uiterlijk van de gevel en voor de keuze van de restauratie-strategie.

Restauratiewerk dat technisch zeer goed is, kan esthetisch waardeloos zijn. Een restauratie moet een ingreep zijn die getuigt van respect voor de historie en de uitstraling van het monumentale pand. Vaak betekent dit, dat het voegwerk slechts een bescheiden ingreep mag zijn, die vooral dienstig moet zijn aan de instandhouding van de uitstraling van het gehele pand. Er kan hier in herinnering worden gebracht dat vanaf het moment dat nieuw voegwerk wordt aangebracht, het oorspronkelijke materiaal verdwenen is. Het monument heeft daarna wellicht in stijl gemaakte nieuwe voegen, maar niet meer de echte, volledig authentieke. Hoogstens kan men de authentieke vorm, kleur en/of textuur behouden (in het nieuwe werk navolgen), maar gelijktijdig is dit van belang dat ook de rol die de voeg als element van de totale gevel speelt behouden blijft. Dat laatste zou over het algemeen genomen wel eens veel belangrijker kunnen zijn dan een slaafse reproductie van wat er ooit is geweest. Behalve technisch compatibel en duurzaam, zou een voegrestauratie in elk geval ook in die zin esthetisch verantwoord moeten zijn.

3 Kalkmortel voor de hedendaagse praktijk

3.1 Kalk in het bouwproces: van planning tot nazorg

Voor een niet onbelangrijk deel is deze kennis mede gestoeld op de traditie. Dit is goed te zien wanneer we hetgeen hier is geschreven vergelijken met teksten in hoofdstuk 2 § 2 Het gebruik van kalk door de eeuwen been en daarin met name § 2.4 De middeleeuwse kalkmortels en het bouwproces.

Planning en voorbereiding

Bij restauraties en conserveringswerkzaamheden zijn de randvoorwaarden van het werk uiteraard zelf al belangrijk. Meestal zal vooronderzoek noodzakelijk zijn om de conditie van het metselwerk en de schademechanismen te onderkennen, met inbegrip van de omgevingscondities. Vooronderzoek zal ook duidelijkheid moeten scheppen over de aanwezigheid van historisch materiaal maar tevens moeten bijdragen aan de evaluatie van de erfgoedwaarden. We verwijzen hiervoor naar hoofdstuk 1 § 2 Restauratie met kalkmortel en in het voorgaande hoofdstuk naar § 2 Ethische en esthetische aspecten.
Voor hervoegwerk in historische gebouwen werd een schema voorgesteld.210 Dat behelst verschillende stappen met betrekking tot de planning en de voorbereiding. De eerste stap betreft het verkennende of oriënterend onderzoek: schade analyse, archeologisch211 onderzoek en onderzoek van de effectiviteit van hervoegen. In de tweede stap worden de eisen bepaald, waaraan het voegwerk en de mortel moeten voldoen: samenstelling, vorm, kleur en textuur van de voeg, technische en esthetische compatibiliteit. Deze keuze is vaak pas mogelijk na de evaluatie van een aantal proefvlakken. In het geval van voegwerk moeten ook de technieken voor het eventueel verwijderen van oud voegwerk (indien dat noodzakelijk is) worden bepaald.

Zoals in het verleden het geval was, is het ook nu van belang gebruik te maken van de juiste materialen, van materialen die in de beste omstandigheden werden vervaardigd en bewaard. Materiaalleveranciers hebben hier ook een verantwoordelijkheid te dragen. In sommige gevallen vergt het verwerven of maken van de juiste materialen een ruime planning om de grondstoffen op tijd ter beschikking te hebben, of indien de weeromstandigheden niet gunstig meer zouden zijn voor de verwerking van de kalkmortel. Denk hierbij aan het grotere gevaar op vorstschade in de winter. Bij toepassing van kalkmortels zijn extra beschermende maatregelen nodig, wanneer gemetseld wordt in de periode tussen november en maart, teneinde

210 Van Bommel 2001 III.

211 Met archeologisch onderzoek wordt hier de ruime betekenis van dit begrip, zoals die in Vlaanderen wordt gehanteerd, bedoeld. Archeologisch onderzoek aan een bouwconstructie is hier het onderzoek naar de bouwconstructie met de systematiek en werkwijze zoals die ook gebruikelijk is bij het oudheidkundig bodemonderzoek.
te voorkomen dat bij het invallen van de vorst het vochtgehalte in de mortel zo hoog zou zijn dat vorstschade kan ontstaan.

Figuur 50
Toepassing van een knipvoeg in een gevel die, gezien zijn bouwdatum, in elk geval van oorsprong nooit een knipvoeg gekend kan hebben. © TNO Bouw

Verwerking

Bij de toepassing van kalkmortel voor verschillende doeleinden moet deze mortel uiteraard een zekere verwerkbaarheid hebben. Deze is afhankelijk van het doel waarvoor de mortel wordt gebruikt en vergt van de ambachtsman de nodige ervaring en vaardigheid. Bij gebrek aan ervaring gaat men soms uit van de gebruikelijke consistentie van een cementmortel. Bij kalkmortels leidt dat vaak tot een samenstelling die te nat is (te veel water bevat ten opzichte van de hoeveelheid bindmiddel) en daarmee tot het gevaar voor krimp. Ook werkt men snel met een te schrale specie, uit angst voor smetten en omdat een kalkmortel snel vet en plakkerig aanvoelt en derhalve wat anders gehanteerd moet worden dan een moderne cementgebonden mortel.

Van belang is dat bij aanmaak en verwerking van de mortel de voorgeschreven materialen in de voorgeschreven verhouding worden gebruikt. De omstandigheden waarin de materialen mogen worden gebruikt moeten ook worden gerespecteerd. We denken hierbij niet alleen aan de klimatologische omstandigheden, maar ook aan de vochtigheid van de ondergrond. De publicatie over Ideal repointing geeft daarnaast nog een aantal aanbevelingen met betrekking tot het verdichten van de voeg, het bevochtigen van de ondergrond en het voorkomen van smetten van het metselwerk.

Nazorg

De trage uitharding van de kalkmortel geeft de metselaar, de pleisteraar en de voeger de mogelijkheid om kleine gebreken te herstellen. Zo kunnen kleine krimp-
Kalkboek

scheuren worden dichtgesmeerd door een nabehandeling met een troffel of voegspijker. Regelmatig (niet overdadig) bevochtigen zorgt voor een vermindering van de spanningen in het materiaal bij het uitdrogen. Het versneld drogen moet worden vermeden, hetgeen ook inhoudt dat het metselwerk niet blootgesteld mag worden aan wind en rechtstreekse bezonning. Omdat het gedurende zekere tijd mogelijk blijft om kleine gebreken te herstellen, heeft het zin de toename van de hardheid en eventueel het optreden van scheurtjes in de mortel (en meer bepaald in de voegmortel) te controleren. Ook na voltooing van de bouw moet er sprake zijn van nazorg, in de vorm van onderhoudsinspecties. Maar dat is een opmerking die eigenlijk als vanzelfsprekendheid overbodig zou moeten zijn in dit tijdperk, waarin onderhoud in toenemende mate een primaire positie krijgt in de instandhouding van ons erfgoed.

3.2 Samenstellen van kalkmortels

In § 6 van hoofdstuk 3 is reeds aandacht besteed aan de verschillende soorten kalkmortels, door het mengen van de verschillende componenten. In de voorliggende paragraaf zal worden besproken op welke wijze een keuze wordt gemaakt voor een bepaalde mortel.

Voor het welslagen van de restauratie is het noodzakelijk mortel toe te passen die specifiek is voor het desbetreffende object, of gedeelte daarvan. Hierbij staat het gegeven centraal dat mortels op de bouwplaats werden samengesteld en dat zoveel mogelijk gebruik gemaakt werd van lokale grondstoffen, dus de grondstoffen die ter plaatse in de handel waren of in de nabije omgeving konden worden ontgonnen. Het gebruik van door mortelcentrales samengestelde kant-en-klare mortels bestond niet. Het is daarom dan ook niet verwonderlijk dat er fluctuaties en verschillen in mortelsamenstellingen optraden binnen één object. Niet alleen de mate van beschikbaarheid van de componenten is debet aan deze fluctuaties en verschillen, maar ook de bewuste keuze van een groep ambachtslieden. Zo kon het voorkomen dat de metselaars van gewelven in een kerk hun eigen mortel gebruikten en dat deze qua samenstelling afweek van de mortel die door de metselaars van de funderingen werd gebruikt. En dit was geen toeval: men wist (uit ervaring en overlevering) op welke plaats in een gebouw welke mortel het meest geschikt was. In de fundamenten werd sterk hydraulische mortel toegepast, al dan niet hydraulisch gemaakt door toevoeging van tras (denk aan het trasraam) en in de gewelven kon luchthardende kalk worden toegepast.

Bij een objectspecifieke restauratie met kalkmortel is het dus noodzakelijk kennis te hebben van de aanwezige mortels. Deze kennis kan verkregen worden uit bronnenonder-
zoek, voor zover er bronnen toegankelijk zijn\(^\text{213}\). De meest praktische wijze van het vergaren van kennis omtrent de mortelsamenstellingen is het doen van materiaaltechnisch onderzoek aan een monster van de mortel zelf. Hierbij staat het verantwoord selecterend van bemonsteringslocaties centraal, veelal gebruik makend van bouwhistorische gegevens. Met petrografisch onderzoek (zie § 1.3) en chemisch onderzoek (§ 1.4) worden de historische samenstellingen bepaald en worden de gehanteerde recepten gedocumenteerd.

Nu is het niet zo, dat de historische samenstellingen direct het recept opleveren van de restauratiemortel(s). De tand des tijds heeft mogelijk invloed gehad op de oorspronkelijke materialen, die hierdoor in meer of mindere mate zijn veranderd. De hoedanigheid van de materialen ten tijde van de restauratie dient dan ook mede ten grondslag te liggen aan de receptuur van restauratiemortels. Maar ook de met verloop van tijd ontstane schadebeelden, zoals het zoutbelast raken van een object, moeten worden geëvalueerd voordat de receptuur kan worden vastgesteld. Het compatibiliteitsbeginsel strekt dus verder dan het compatibel zijn met de oorspronkelijke materialen. Dit kan de adviseur van restauratiemortels voor grote dilemma’s plaatsen, maar deze zijn er om te worden opgelost, waarbij verantwoorde keuzes moeten worden gemaakt.

De compatibiliteit van baksteen en mortel in metselwerk vereist op elkaar afgestemde eigenschappen van die materialen, met als belangrijkste eigenschappen het drooggedrag, het waterdoorlatend en het waterbergend vermogen.

De poriestrukturen van de mortels en van de (bak)stenen bepalen in belangrijke mate hoe water zich binnen de structuur gedraagt (zie § 1.3 Aanvullend onderzoek aan historische mortels). Zo zal bij zacht gebakken, sterk poreuze bakstenen de metselmortel schraler moeten zijn dan bij nauwelijks waterdoorlatende klinkers. Wanneer de metselmortel niet in de voeg wordt doorgestreken, moet bovendien een met de metselmortel en baksteen compatibele voegmortel worden gekozen. De voegmortel mag weliswaar met fijner toeslagzand zijn verschraald, maar de verhouding tussen de hoeveelheid bindmiddel en het toeslagzand moet aansluiten bij metselmortel en baksteen.

In oude veldovens kwamen door het niet goed controleerbare bakproces verschillende gradaties baksteen voor. Het product varieerde in kwaliteit van te zacht gebak-

\(^{213}\) Van de Vijver 1997 II.
ken stenen, tot geheel of gedeeltelijk gesinterde klinkers. Zacht- en hardgebakken stenen werden normaal gesproken uitgesorteerd. In de praktijk komen we echter ook gevallen tegen waar de stenen onvoldoende op deze kwaliteit gesorteerd zijn. Bij het zoeken naar een geschikte compatibele metselmortel moet in dit geval gezocht worden naar een compromis, ervan uitgaande dat met zo min mogelijk verschillende mortels moet kunnen worden gerestaureerd.

Deze eigenschappen van de baksteen worden onder andere bepaald door het type klei en de baktemperatuur omdat die van invloed zijn op de grootte van poriën, het totale porievolume en de poriegrootteverdeling. Met de baktemperatuur varieert ook de mate waarin de poriëwand affiniteit voor water vertoont (adhesie, capillaire gedrag). Naar mate de baktemperatuur toeneemt sintert de klei meer waardoor de mate waarin poriën met elkaar in verbinding staan door blokkades in poriën zal afnemen. Het verschil dat aldus ontstaan is tussen hard en zacht gebakken bakstenen wordt functioneel benut bij de toepassing in gebouwen. Denk hierbij aan het gebruik van (trasraam)klinkers in het trasraam, waarbij juist het capillaire transport van water door de aanwezigheid van klinkers wordt bemoeilijkt. Boven het trasraam en vooral voor binnenmuren of te bepleisteren muren werden zachtere bakstenen toegepast. De hardheid van de baksteen is op die manier bepalend voor de mate van hygrische compatibiliteit van de mortel met de baksteen.

Uit onderzoek aan historische mortels blijkt overigens telkens weer dat de bouwers van toen veelal gekozen hebben voor vette en zeer vette mortels. Schrale tot zeer schrale mortels worden nauwelijks in historisch metselwerk aangetroffen. Bij het herstel van met name voeg- en pleisterwerk moet dan ook rekening worden gehouden met de hygrische eigenschappen van originele baksteen en mortel. Het kan in voorkomende gevallen wenselijk zijn een iets schralere maar fijne voegmortel te gebrui-
ken voor het herstel dan de vette originele mortel, om zo de droging van het metselwerk te bevorderen.

Ook bij het vervangen van *historisch pleisterwerk* kan soms beter van de originele samenstelling worden afgeweken. Wanneer het metselwerk in de loop der tijd zoutbelast is geraakt, kan het beter niet met een dichte pleisterlaag worden afgedekt omdat de zouten dan achter de laag kunnen kristalliseren. Door bijvoorbeeld een mortel te kiezen die iets schraler is en goed gesorteerd zand bevat, wordt de kans op schade door zouten verminderd omdat de zouten niet achter maar óp de laag uitkristalliseren. NB: Uiteraard zal ook een eventueel op de pleisterlaag aan te brengen verflaag of andere afwerking binnen dit concept moeten passen. Plakt men er bij wijze van spreken een behangetje over, of werkt men de pleisterlaag af met een latex of misschien zelfs een nog dichtere verflaag, dan kan het effect van de zorgvuldig gekozen pleisterlaag ernstig geschaad of zelfs geheel teniet gedaan worden.

De keuze van het *soort bindmiddel* (*luchthardend* of *hydraulisch*) moet gebaseerd zijn op de soort van toepassing van het metselwerk. Van groot belang is daarbij of lucht kan toetreden tot de verhardende mortel. Dat is immers noodzakelijk voor de verharding van luchthardende kalk. Waar er sprake is van een waterkerende situatie, waarbij niet of nauwelijks lucht tot de mortel kan toetreden, zal men voor een hydraulisch product moeten kiezen. Luchthardende kalk kan om deze reden wel worden toegepast in de gewelven van bijvoorbeeld kerkgebouwen, maar niet onder de waterlijn bij bijvoorbeeld kademuren, waar juist voor (sterk) hydraulische kalkmortel gekozen zal moeten worden.

Het samenstellen van een mortel voor inboet-, voeg-, of pleisterwerk vereist dus niet alleen onderzoek naar de gebruikte mortels en naar de staat waarin het metselwerk zich thans bevindt (bijvoorbeeld de zoutbelasting daarvan), maar ook aan de gebruikte bakstenen. Voor de keuze van de mengverhoudingen wordt verwezen naar § 3 van hoofdstuk 3.

3.3 Het gebruik van kalk in de huidige bouwpraktijk

In het jaar 2000 werd met een enquête onder een kleine selectie van bouwbedrijven (restauratieaannemers en voegbedrijven) onderzocht of en hoe momenteel kalkmortels worden gebruikt in de restauratiepraktijk. Dat leverde een aantal interessante gegevens over de huidige bouwpraktijk op. In de enquête werd onder andere
gevraagd naar:
– het gebruik van kalkmortels in de restauratiepraktijk van de ondervraagde,
– ervaringen met schade aan voegwerk,
– de wijze waarop men rekening houdt met weers- en seizoensinvloeden,
– toegepaste mortelsamenstellingen en alternatieven.

In het algemeen blijkt dat men kalkmortels alleen toepast bij restauratiewerk. Uit de nieuwbouw zijn kalkmortels vrijwel geheel verdwenen, zij het dat met name in Nederland bastaardmortels nog veelvuldig als metselmortel worden toegepast. Kalk heeft daarbij echter steeds meer het karakter van een hulpstof gekregen. De kalk zorgt ervoor dat de mortel plastischer en beter verwerkbaar is en zorgt voor een beter watervasthoudend vermogen. Typische samenstellingen (NEN 3835) zijn twee delen cement en één deel kalk op zeven delen zand of één deel cement en één deel kalk op vijf delen zand voor zwaar belast en belast metselwerk buiten tot één deel cement en vier delen kalk op twaalf delen zand voor binnenwerk.

Als reden voor het niet meer toepassen van kalkmortel in nieuwbouw wordt met name de snellere verharding en daarmee het sneller kunnen werken met cementmortels genoemd. Ook telt zwaar dat men bij het gebruik van cement in mindere mate afhankelijk is van seizoens- en weersinvloeden. Als reden voor het wel toepassen van kalkmortels in restauratieprojecten wordt vooral de betere compatibiliteit van kalkmortels met het originele werk genoemd. Kalkmortels worden vooral gebruikt voor (her)voegwerk en inboetwerk. Voor de samenstelling ervan wordt zowel luchtkalk (schelpkalk of steenkalk) als hydraulische kalk toegepast.

De meeste restauratieaannemers en voegers kennen het begrip in de rot zetten van kalk. Ze doelen daarmee op het gedurende langere tijd bewaren van de kalk (of soms de kalkspecie) in een kalkput. Daarbij wordt de kalk eerst geblust en vervolgens bewaard onder een laagje water. Alle betrokkenen weten te melden dat daar door de kwaliteit en verwerkbaarheid (de plasticiteit) toenemen. Enkelen weten te melden dat er kleinere kristallen ontstaan, die zich beter of makkelijker om de zandkorrels kunnen vleien. Als noodzakelijke periode voor de rot wordt meestal circa zes maanden genoemd. Hoewel sommigen vroeger wel eens een kalkput op het werk hadden, is daar nu bij geen van de geïnterviewden meer sprake van.

Voor hydraulische kalkmortels, die verharden met water, is in de rot zetten (uiteraard) niet aan de orde.

Kijken we naar de door aannemers en voegers toegepaste recepturen voor kalkmortels voor voegwerk (tabel 12), zoals die door de geïnterviewden werden opgegeven, dan valt het op dat in veel gevallen geen sprake is van zuivere kalkmortels, maar eigenlijk van bastaardmortels.
Tabel 12

<table>
<thead>
<tr>
<th>Bindmiddel-zandverhouding</th>
<th>Luchtalk</th>
<th>Hydraulische kalk</th>
<th>Tras</th>
<th>Traskalk</th>
<th>Trascement</th>
<th>Portlandcement</th>
<th>Wit cement</th>
<th>Zand</th>
<th>Opmerkingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 : 1 7/8</td>
<td>2</td>
<td></td>
<td>1/5</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 : 2</td>
<td>1</td>
<td></td>
<td>2/3</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 : 3/2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 : 1 9/11</td>
<td>1</td>
<td></td>
<td>3/10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 : 1 7/8</td>
<td>2</td>
<td></td>
<td>1/6</td>
<td>1/2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 : 1 1/2</td>
<td>1</td>
<td></td>
<td>1/3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 : 1 2/3</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 : 2 1/3</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 : 4 1/2</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binnen</td>
</tr>
<tr>
<td>1 : 1 2/3</td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 : 3 1/3</td>
<td>2</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 : 1 2/3</td>
<td>2</td>
<td></td>
<td>1/4</td>
<td>1/2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 : 2 1/7</td>
<td>2</td>
<td></td>
<td>1/2</td>
<td>2/3</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 : 1 2/5</td>
<td>2</td>
<td></td>
<td>1/2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Redactie: het aandeel tras is te hoog om geheel als bindmiddel meegerekend te worden. Normaal wordt niet meer tras gebruikt dan kalk. Wordt meer tras dan kalk toegevoegd, dan zal het meerdere zich gedragen als inert toeslagmateriaal.

Naast de in tabel 12 genoemde, zelf samengestelde mortels, die overigens in veel gevallen door de bedrijven als een vast recept worden beschouwd, worden ook prefab mortels toegepast.

Het gebruik van kalkmortels beschouwt men overigens niet als volledig probleemloos. Zo wordt aangegeven dat bij lage temperatuur (genoemd worden 0 tot 5 °C als grenzen) en bij regen of zeer natte omstandigheden niet gewerkt kan worden. Blijft de voegmortel met hydraulische kalk te droog dan kan verbranden optreden. Met betrekking tot de aanwezigheid van zouten bestaat geen duidelijke lijn. Soms wordt gesteld dat kalk beter bestand is tegen zouten dan cement en tras. Anderen passen in zo'n geval juist geen kalk toe, maar een speciale geprefabriceerde zoutbestendige voegmortel.

Voor wat betreft de keuze van de samenstelling is vooral de resulterende kleur van belang. Deze wordt met name bepaald door het soort zand. Zo is bergzand...
Kalkboek

roodbruin en is kalksteen zand erg wit. Het gebruik van proefvlakken voor het bepalen van voegkleur en -sterkte, bepaald door krassen en prikken, wordt als belangrijk genoemd.

De meeste van de geënterviewden maken hun kalkmortel zelf. Het in de rotzetten van de kalk of van de specie gebeurt zoals gemeld niet meer. Aannemers en voegers beschouwen in het algemeen hun eigen recept als zeer goed. Ze denken hierbij vaak dat ze zo goed mogelijk de oude samenstelling reproduceren. Mocht na applicatie schade ontstaan dan wordt de oorzaak eigenlijk altijd in de verwerking gezocht en wordt de schade opgelost door de mortel te vervangen door een mortel met gelijke samenstelling.

Kritische beschouwing van de mortelrecepten uit de praktijk

Hierboven is op basis van een enquête onder restauratieaannemers en -voegers een indruk gegeven hoe in de tegenwoordige restauratiepraktijk met kalk (voegwerk) wordt omgegaan. Hierna worden enkele opmerkelijke zaken nog eens kort van commentaar voorzien:

Opmerkelijk is dat weliswaar enkele zuivere kalkmortels worden opgegeven, maar die toch zelden worden toegelaten. In de praktijk gebruikt men vrijwel altijd bastaardmortels.

Men is er in het algemeen weinig toe geneigd om (voor)onderzoek te (laten) doen naar de conditie van het aan te pakken metselwerk en naar mogelijk aanwezige schademechanismen; de trend is evenwel aan het veranderen. Men is in toenemende mate bereid om dit onderzoek te laten uitvoeren, mits de resultaten maar vertaald worden in een door de vaklui bruikbare receptuur.

Hoewel men veel schadepatronen die werden getoond wel herkent en er soms in eigen werk mee geconfronteerd is geweest, is men wellicht te snel geneigd bij eventueel falen de hand in eigen (uitvoerings)boezem te steken. Daarbij ziet men over het hoofd dat de gekozen mortelsamenstelling mogelijk niet compatibel was met de aanwezige oude materialen of door de grote kans op bepaalde schadelijke mechanismen niet voldeed.

In het algemeen zweet men bij het eigen beproefde kalkmortelrecept. Men is bereid, bij opgetreden schade, het voegwerk (zelfs herhaalde malen) te vervangen, maar wel steeds opnieuw door voegwerk van gelijke samenstelling.

Hoewel voorop staat dat in de restauratiewereld vakmanschap en kunde de boventoon voeren, kan tegelijk geconstateerd worden dat de wetenschappers er nog onvoldoende in geslaagd zijn hun kennis en inzicht in de mogelijke rol van mortelsamenstellingen en morteleigenschappen op het ontstaan van schade aan
voegwerk in historisch metselwerk op praktische wijze te vertalen. Daardoor blijft ook hier het wijdverbreide misverstand leven dat een exacte kopie van de oude mortel per definitie de beste (meest compatibele) oplossing zou zijn.

Een belangrijke conclusie die men uit het lezen van dit boek kan trekken, is dat voor een verantwoorde keuze van een mortelrecept een onderzoek van de situatie (diagnose) vereist is. In de huidige bouwpraktijk gebeurt dit maar zelden. Vaak worden door de metselaar en voeger standaardproducten gebruikt, die veelal als droog mengsel op de bouwplaats worden aangeleverd. Het kan daarbij gaan om mortels die eigenlijk voor de nieuwbouw zijn bedoeld of om speciale mortels voor de restauratie. Daarnaast kennen veel ambachtslieden en bedrijven hun eigen mortelrecepten, waarvan de samenstelling soms angstvallig geheim wordt gehouden.

Dat een nieuwbouwmortel bij de restauratie van een historisch gebouw niet zondermeer gebruikt kan worden, ligt voor de hand. Bij nieuwbouw is er immers sprake van baksteen die naar huidige maatstaven is geproduceerd en die derhalve andere eigenschappen heeft dan oude baksteen, afkomstig uit een veldoven. Historische gebouwen hebben doorgaans massieve muren, die een functie als waterscheiding tussen buitenklimaat en interieur vormen. Bij moderne gebouwen is meestal sprake van een (halfsteens) buitenspouwblad. Dat buitenspouwblad mag, in tegenstelling tot historisch massief muurwerk, aan de binnenkant best wel vochtig worden. Kortom, historische gebouwen wijken in technisch opzicht sterk af van moderne gebouwen en materialen en technieken die geschikt zijn voor moderne gebouwen zijn niet bedoeld of geschikt voor oude gebouwen.

Maar ook het toepassen van standaard restauratiemortels of eigen recepten is niet zonder gevaar. De grote verschillen in eigenschappen van de materialen die zijn gebruikt bij de bouw van de vele duizenden monumenten zijn alleen al een belangrijk argument om niet te geloven in een universeel toepasbaar recept. Daar komt nog bij dat de invloeden van weer en wind, de gevolgen van ingrepen in het verleden, de aanwezigheid van aantastende stoffen, gevolgen van calamiteiten en andere zaken die de situatie beïnvloed hebben, van monument tot monument, van gevel tot gevel en zelfs van het ene deel van de gevel tot het andere deel van de gevel verschillen. Goed beschouwd mogen we al blij zijn als we voor één ingreep aan één gevel een mortelrecept kunnen vinden waarmee adequaat wordt ingespeeld op de verschillende problemen welke die ene betreffende gevel kent. We kunnen hieruit maar één logische conclusie trekken: willen we dat ene mortelrecept vinden dat voor een bepaalde toepassing aan een bepaald monument het juiste is, dan zullen we de situatie goed moeten laten onderzoeken en een deskundig morteltechnoloog moeten vragen om op basis van de bevindingen dat recept voor ons te bepalen!
Deze conclusie zal de meeste architecten en aannemers echter voor een onoverkomelijk probleem stellen. Het verrichten van onderzoek is geenszins een traditie in de bouw. Opdrachtgevers en subsidieverstrekkers zullen zich afvragen, waarom niet gewoon zoals altijd een mortelsamenstelling door architect of aannemer kan worden bepaald. Het gaat hier toch om deskundige partijen, die al sinds mensenheugenis gewend zijn om simpele zaken als een mortelreceptuur vanuit hun vakmanschap te bepalen. Waarom ineens veel geld besteden aan dure onderzoeken, die vroeger toch ook niet nodig waren?

De oplossing van deze vraag zit eigenlijk in een eenvoudig rekensommetje. Dat vergelijkt het risico dat men loopt indien er geen onderzoek wordt uitgevoerd enerzijds en de kosten die met onderzoek zijn gemoeid anderzijds. De kosten van onderzoek zullen vaak enkele duizenden euro’s bedragen. Dat bedrag is in de meeste gevallen maar een fractie van de kosten die een bouwkundige ingreep met zich mee zal brengen. Bij een wat grotere klus is het evident dat, wanneer de duurzaamheid van het werk dankzij het onderzoek slechts met bijvoorbeeld een decennium zal toenemen, de kosten van het onderzoek daarmee al ruimschoots zijn terugverdiend. Het is deze inschatting die men zal moeten maken, wanneer men zich afvraagt of het in een bepaalde situatie de moeite loont om een onderzoek uit te voeren. Het mag evident zijn dat in het geval er van ingewikkelde, moeilijk te begrijpen schade sprake is, het risico dat men loopt dat men zonder onderzoek een verkeerde mortel zal kiezen navenant groot is. Men zal dan eerder onderzoek moeten laten uitvoeren dan in het geval dat het een eenvoudige, allerdagse situatie betreft. Evenzo is bij een groot werk, waarbij de kosten van de ingreep hoog zijn, een onderzoek eerder gerechtvaardigd dan bij een klein werk, waaraan relatief weinig kosten zijn verbonden.

Bij monumenten geldt daarnaast uiteraard, dat elke ingreep in het monument ten koste gaat van een deel van de authenticiteit, van de waarde van het monument. Uit oogpunt van erfgoedzorg is dat een extra argument om onderzoek belangrijk te vinden. Waar een eigenaar in economische overwegingen mogelijk geen argument voor onderzoek vindt, zal de instantie die ingrepen in monumenten toetst en er eventueel ook subsidie voor verleent, hierin in voorkomende gevallen rechtvaardiging moeten vinden om onderzoek te eisen.

Desondanks zullen er gevallen zijn, waarin van onderzoek geen sprake zal zijn. Voor een paar vierkante meter voegwerkherstel of het inboeten van een paarstenen in een relatief simpel monument zal men immers volgens bovenstaande redenering niet kunnen terugvallen op een speciaal voor die situatie verricht weten-
Kalk in de restauratiepraktijk

schappelijk onderzoek. Wanneer in die gevallen geen evidente aantastingsmechanismen spelen, zal men zich *kunnen behelpen* met standaard restauratiemortels of met recepten die op basis van algemene kennis zijn bepaald. Hierbij gelden enkele belangrijke basisuitgangspunten.

In het trasraam, in funderingswerk en wanneer werk in direct contact met water staat, zoals bij kademuren, moet een mortel in elk geval hydraulisch zijn. Men zal dan moeten kiezen voor een traskalkmortel, een cementmortel, een voldoende hydraulische bastaardmortel of een trascementmortel.

In het daarboven gelegen werk kan ook met een zuivere luchtkalkmortel worden gewerkt. In het algemeen wordt aan de laatste een weinig (minimaal 10%) cement toegevoegd om een snellere verharding te bevorderen. Bij voorkeur gebruikt men bij het metselwerk daarvoor CEM III (Hoogovencement). Een beter alternatief is het gebruik van hydraulische kalk of het toevoegen van puzzolanen. Toevoeging van een luchtbelvormer kan verder nuttig zijn om vorstschade te voorkomen. Voor voegwerk geldt dat boven het trasraam in principe geen tras aan de cement moet worden toegevoegd.

Verdergaande recepten kunnen, waar het eenvoudig klein voegwerk zonder evidente aantastingsprocesen betreft, worden afgeleid uit tabel 12. Ook mortels voor gevelmetselwerk kunnen ongeveer die samenstelling hebben, zij het dat doorgaans daarvoor wat grover zand wordt gebruikt. Voor trasramen en vooral voor kelders moet dan een wat vettere mortel worden gebruikt (naar verhouding wat meer bindmiddel), voor binnenmuren volstaan de schraalste mortels uit die tabel. De eerlijkheid gebiedt echter om bij dergelijke mortelrecepten te melden dat alleen al de zeeekromme van het zand zo bepalend is voor de eigenschappen van een mortel, dat het geven van recepten in simpele verhoudingen als ½ cement : 2 kalk : 1 tras : 6 à 8 zand (een recept voor binnenmetselwerk) eigenlijk niet te verantwoorden is.

3.4 Vragen en antwoorden over kalkmortels in de praktijk

Met regelmaat worden de adviseurs van de afdeling Instandhoudingstechnologie van de Rijksdienst voor de Monumentenzorg geconfronteerd met vragen rond de toepassing van kalk in de praktijk. In het kader van dit boek zijn de meest gestelde vragen vergaard en naar hun onderwerp gesorteerd. Hieronder zijn deze vragen op een rij gezet, voorzien van de antwoorden die daarop door de auteurs van dit boek werden gegeven.
Kalkboek

1 In veel situaties kan zowel een luchthardende als een waterhardende (hydraulische) kalkmortel worden gebruikt. Welke argumenten zijn er dan om voor de een of voor de ander te kiezen?

In omstandigheden waarin echt beide typen geschikt zijn, zou men in historische gebouwen in eerste instantie hetzelfde bindmiddel kunnen gebruiken als in de oorspronkelijke mortel werd toegepast. Indien er echter onvoldoende beschermende maatregelen tegen uitlogen, bevochtiging en vorst genomen kunnen worden, dan kan overwogen worden hydraulische kalk of kalk met puzzolanen te gebruiken.

Zie ook vragen 6, 7, 10, 12, 13, 14 en hoofdstuk 3 § 6.3.

2 Indien het uitgangspunt een waterhardende kalkmortel is, in welke situatie gaat de voorkeur dan uit naar een hydraulische kalk en wanneer naar een luchtkalk met tras?

Zowel bij een hydraulische kalk als bij een luchtkalk met tras is sprake van een hydraulische mortel. Er kan voorkeur bestaan voor de een of voor de ander afhankelijk van de aanwezigheid van zouten.

Verder verdient – als het om voegwerk en de keuze tussen deze beide mortels gaat – hydraulische kalk de voorkeur. Immers, het risico van verbranden is bij een luchtkalk met tras groter dan bij een hydraulische kalk.

Mocht aanvankelijk onvoldoende water voor de verharding (hydratatie) voorhanden zijn, dan kan bij hydraulische kalk eventueel in een later stadium als nog een vrijwel volledige verharding optreden. Indien bij toepassing van luchtkalk met tras aanvankelijk te weinig water voor handen is, zal een deel van de kalk carbonateer. Deze kalk kan dan niet meer reageren met de tras, waardoor het effect van dit laatste materiaal (gedeeltelijk) teniet wordt gedaan. De niet gebonden tras fungeert slechts als een fijne toeslag. Het resultaat is hetzelfde als wanneer er schralere mortel zou zijn toegepast.

Zie ook vragen 5, 6, 14 en hoofdstuk 3 § 6.3 en § 7.5.

3 Kan een puzzolaan worden toegevoegd aan hydraulisch kalk?

Dat zou kunnen, maar zeker bij een hooghydraulische kalk heeft dat weinig zin. In een hooghydraulische kalk zit immers maar weinig luchthardende kalk. Bij een zwak hydraulische kalk zou men er nog aan kunnen denken. Door de relatief grote fractie luchtkalk tot een reactie met (bijvoorbeeld) tras te dwingen, beperkt men immers de vorming van (gemakkelijk uitlogend) calciumcarbonaat. Men moet er echter rekening mee houden dat de reactie van de hydraulische kalk met water veel sneller verloopt dan de reactie van de luchtkalk met tras en water. Er is een gerede kans dat het water, benodigd voor de reactie van de luchtkalk en de tras, niet beschikbaar is omdat dit al door de hydraulische componenten is verbruikt.

216
4 Wat gebeurt er wanneer kalk in de rot wordt gezet? Kan dat met alle typen kalk?

Wanneer kalk in de rot wordt gezet, wordt deze gedurende langere tijd onder water bewaard. Uit onderzoek is bekend dat daardoor kleinere kristallen ontstaan. Gevolg is dat het watervasthoudend vermogen van de hiermee gemaakte kalkmortels in principe groter is. In de rot zetten heeft alleen maar zin en is ook alleen maar mogelijk bij luchtkalk (steenkalk en schelpkalk). Hydraulische kalk verhardt (ten dele) met water en verliest zijn hydraulische eigenschappen als het in de rot gezet zou worden.

De invloed van het rotten op het watervasthoudend vermogen en de plasticiteit van kalkmortel is vooral van belang bij mortels voor pleister- en stukadoorswerk. Voor metsel- en voegmortels geldt dat het watervasthoudend vermogen, ook zonder dat de kalk is gerot, al voldoende groot is. Dat verklaart waarom in het verleden de kalk voor een metselmortel lang niet altijd werd gerot maar vaak vrij snel werd gebruikt. Dat bewijzen ook de kalkknollen, die vaak in oude kalkmortels zijn aan te treffen.

Zie ook hoofdstuk 3 § 4.1.

5 Waardoor is de kans op uitlogging kleiner bij toevoeging van tras aan een kalkmortel?

Kalk en tras gaan een chemische verbinding aan. Daartoe dient de mortel wel onder gunstige omstandigheden (met voldoende water) te verharden. Er wordt beweerd dat met schelpkalkmortels minder uitbloei ontstaat dan met hydraulische kalk, maar er is tot op heden geen onderbouwing van deze bewering gevonden, noch is bekend welk mechanisme ervoor verantwoordelijk zou zijn.

Zie ook hoofdstuk 3 § 7.3 en hoofdstuk 4 § 3.8.

6 Zorgen puzzolanen, zoals tras, voor het meer waterdicht worden van een mortel?

Inderdaad. Vermoedelijk is dit een gevolg van de vorming van calciumsilicaatgel. Die gel vult als het ware poriën op, hetgeen resulteert in een afname van de permeabiliteit (doordringbaarheid) voor water.

Zie ook vraag 13 en hoofdstuk 3 § 6.3, § 7.3 en § 7.5.

7 Gaat de verharding van een hydraulische mortel, net als bij een luchthardende mortel, min of meer continu door? Kan de verharding, na een droge periode, weer op gang komen zodra voldoende vocht beschikbaar komt?

Op de eerste plaats moet worden opgemerkt dat de verharding van een mortel op basis van luchthardende kalk alleen maar door kan lopen zolang er koolzuurgas kan binnendringen. Is de mortel nat, dan stopt het toetreden van koolzuurgas en stokt de verharding totdat de mortel weer voldoende is opgedroogd. Verder moet wor-
Kalkboek

den bedacht dat een hydraulische kalk nooit volledig waterhardend is. Het deel dat wel waterhardend is, zal sterkte blijven ontwikkelen zolang er water is en de mogelijke eindsterkte nog niet is bereikt. Is het water voortijdig op, dan stokt de hydraulische verharding. Komt er opnieuw water beschikbaar, dan kan de hydraulische verharding in principe verder gaan. Valt de mortel te droog voor de hydraulische verharding, dan zal dat in principe ten goede komen aan dat deel van de kalk dat luchtverhardend is. Kortom, afhankelijk van welk stadium is bereikt, zal bij zowel vochtiger als drogere mortel de sterkteontwikkeling inderdaad en letterlijk min of meer continu kunnen toenemen. Dit antwoord geldt overigens niet voor mortels die hydraulisch zijn op basis van de toevoeging van puzzolanen (zoals tras) zoals al eerder besproken.

Zie ook hoofdstuk 3 § 6.3.

Verwerking kalkmortel

8 Zijn kalkspecies in het algemeen plastischer en beter verwerkbaar dan cementspecies en hoe komt dat?

Eerst dienen de gebruikte begrippen plastisch en verwerkbaar wat te worden verduidelijkt. Met plastisch wordt bedoeld vervormbaar, zonder te scheuren. Als zo danig kunnen we eigenlijk stellen dat plasticiteit een onderdeel van de verwerkbaarheid vormt. Met verwerkbaar wordt daarnaast vooral ook bedoeld dat de specie stabil is in de kuip, zodat de metselaar niet voortdurend opnieuw hoeft te mengen. Die stabiliteit wordt in belangrijke mate bepaald door het watervasthoudend vermogen van de specie.

Het watervasthoudend vermogen is groter bij aanwezigheid van meer fijne deeltjes in de specie. Omdat kalk en met name steenkalk in het algemeen uit fijnere deeltjes bestaat dan cement (een relatief groot specifiek oppervlak heeft), is het watervasthoudend vermogen groot en zeker beter dan dat van cementspecies. Daarom is de verwerkbaarheid van een kalkspecie in principe inderdaad beter dan die van een cementspecie. Toch mag worden verwacht dat de moderne metselaar ook bij de verwerkbaarheid van kalkspecies gemengde gevoelens zal hebben. Dit heeft te maken met het feit dat in de huidige bouwpraktijk alle metselspecies een luchtbelvormer bevatten. Met een luchtbelvormer kan de verwerkbaarheid optimaal worden ingesteld. Zelfs bouwkalk (dat wil zeggen bastaardmortels van zowel steenkalk als schelpkalk) wordt tegenwoordig in Nederland vaak standaard met luchtbelvormer geleverd.

Plasticiteit en stabiliteit zijn echter niet de enige factoren die de verwerkbaarheid bepalen. Van belang is bijvoorbeeld ook dat de specie goed op de troffel blijft liggen, maar er ook zonder kleven afglijdt als de troffel wordt gekeerd. Verder moet
Kalk in de restauratiepraktijk

dede specie zich goed laten spreiden. Na het spreiden op de gereed liggende steenlaag moet de specie minstens zolang het vocht vasthouden als nodig is om de volgende steen goed te laten vlijen.

Het watervasthoudend vermogen van de specie mag ook weer niet te hoog zijn. Anders zou het verse metselwerk, na het bereiken van een zekere hoogte, instabiel worden, doordat de stenen onderin gaan ‘drijven’.

Bovenstaande beschouwing gaat met name op voor metselspecies. Voor voegspecies ligt het iets anders, omdat we daar eigenlijk meestal niet van plastisch kunnen spreken. Voegspecie wordt doorgaans tamelijk droog toegepast (dit vooral om smetten te voorkomen). Alleen voor het maken van snij- en knipvogen is een relatief hoge plasticiteit (en daarmee een hoog watervasthoudend vermogen) vereist.

Plasticiteit (vervormbaarheid) kan overigens ook betrekking hebben op verharder mortel. Daaronder verstaat men dan het vermogen tot vervormen zonder dat scheurvorming ontstaat. De vervormbaarheid van verharde kalkmortel is aanzetkelijk groter dan die van cementmortel.

Zie ook vraag 9 en hoofdstuk 5 § 4.2.

9 Hoe kan de verwerkbaarheid van metselspecie worden verbeterd (zonder de eigenschappen negatief te beïnvloeden)?

De verwerkbaarheid van cementspecies kan onder andere worden verbeterd door het toevoegen van kalk. Dat levert dan bastaardmortels op.

Bij kalkspecies hoeft de verwerkbaarheid zelden verbeterd te worden, omdat juist dankzij de zeer kleine kalkdeeltjes de mortel eerder te vet dan te schraal aangevoelt. Mocht dat nodig zijn, dan kan de verwerkbaarheid van kalkspecies worden verbeterd door fijnere kalk te gebruiken. Immers, hoe fijner de kalk, des te groter is het specifiek oppervlak van het materiaal. De toename van het specifiek oppervlak gaat gepaard met de toename van het watervasthoudend vermogen en van de stabiliteit. Alleen bestaat dan het gevaar dat de mortel bij het verwerken vet aanvoelt en aan de troffel blijft plakken.

De verwerkbaarheid van mortel kan ook worden verbeterd door het toepassen van luchtbelvormers. Een luchtbelvormer verbetert de verwerkbaarheid door lucht als een soort glijmiddel te gebruiken waardoor de mortel minder water kan bevatten voor dezelfde verwerkbaarheid. De stabiliteit van de specie in de kuip wordt beter en ook het spreidvermogen van de specie neemt toe. Het watervasthoudend vermogen wordt echter juist verminderd. Dat laatste betekent dat de omringende stenen meer of eerder water aan de mortel kunnen onttrekken. Omdat de steen in dat geval meer kalkwater opzuigt, neemt in principe de kans op kalkuitbloei
Kalkboek

toe. Tevens is een luchtbelvormer ongunstig voor de hechting van de mortel aan de steen. Zeker met kalkmortels, die altijd al een geringere hechtsterkte hebben dan cementmortels, zou dit enig risico kunnen inhouden. In de meeste in Nederland geleverde bastaardmortels voor de nieuwbouw (zowel van portlandcement met steenkalk als met schelpkalk) is overigens, ter verbetering van de verwerkbaarheid, al luchtbelvormer toegevoegd.

Zie ook vraag 8 en hoofdstuk 5 § 4.2.

10 Welke speciesamenstelling en welk type kalk is het meest gevoelig voor vorst tijdens de uitharding?

In principe kan gesteld worden dat, naarmate er meer kalk in een mortel aanwezig is (en dus ook hoe meer de uitharding wordt bepaald door carbonatatie), ook de vorstgevoeligheid van de mortel tijdens de uitharding zal toenemen. Mortel met cement, hydraulische kalk of tras is minder vorstgevoelig tijdens de uitharding. Dit komt voor een deel doordat de uitharding van hydraulische mortel wordt bepaald door hydratatie (wat sneller gaat dan de carbonatatie van kalk) en anderzijds doordat het watervasthoudend vermogen geringer is. Eén van de randcondities voor vorstschade, een hoog vochtgehalte, zal zodoende bij een mortel met meer hydraulisch bindmiddel (en met name bij cement) minder snel voorkomen. Overigens zijn mortels op basis van zeer fijn zand vorstgevoeliger dan mortels op basis van grof zand.

Bij gebruik van een cementmortel met luchtbelvormer loopt men de minste kans op vorstschade aan verse mortel. Deze mortel zal snel uitharden en bevat relatief weinig water. Ook een kalkmortel met luchtbelvormer is behoorlijk goed bestand tegen vorstschade. In dat laatste geval geldt wel dat er risico blijft bestaan zolang de kalk niet is uitgehard. Bij restauraties waar kalk wordt gebruikt is het daarom van belang het werk goed te plannen (niet werken kort voor of tijdens vorst) en is het beschermen van het metselwerk tegen overmatige vochtbelasting, wind en vorst noodzakelijk.

Zie ook hoofdstuk 4 § 3.2.

Metselwerk, compatibiliteit

11 Welk type mortel of welke samenstelling is in verharde toestand mechanisch gezien het meest flexibel?

Een kalkmortel heeft ongetwijfeld een hogere vervormbaarheid dan een cementmortel. Rekening houdend met het zelfherstellend vermogen van kalkmortel zouden we kunnen veronderstellen dat een vette (kalk)mortel nog iets flexibeler geacht mag worden dan een kalkmortel met een lager bindmiddelgehalte.

Zie ook hoofdstuk 3 § 2.3, § 2.4 en § 6.3 en hoofdstuk 4 § 3.2.
Kalk in de restauratiepraktijk

12 Geeft toevoeging van tras een sterkere hechting van de mortel aan de steen?

Omdat er bij de traskalkreactie silicaten worden gevormd, verbindingen die in principe verwant zijn aan de steen en omdat calciumsilicaat naaldvormige kristallen heeft, die als het ware tussen de korrels van de steen kunnen dringen, mag van de toevoeging van tras inderdaad een betere hechting verwacht worden. Er moet nogmaals aan herinnerd worden, dat tras alleen werkt bij aanwezigheid van kalkhydraat en water.

Tras wordt vaak in een verhouding één tras op één kalk toegepast. Bij die verhouding is er juist voldoende tras om geheel met luchtkalk te reageren. Is de kalk al enigszins hydraulisch, of streeft men geen volledig hydraulisch bindmiddel na, dan volstaat een geringere hoeveelheid tras. Er hoeft nooit meer tras te worden toegevoegd dan ter grootte van het volume aan luchtkalk terwijl het volume zand in vergelijking met het totaal van kalk en tras niet meer dan drie keer groter mag zijn.

Een typische verhouding van een mortel op basis van kalk, tras en zand is (in volumedelen) 1 : 1 : 5, of omgerekend naar 1 m³ zand (1450 kg), 100 tot 120 kg kalkhydraatpoeder en 180 kg tras.\footnote{zie hoofdstuk 3 § 7.5.}

Zie ook hoofdstuk 3 § 7.5.

13 Welke kalkmortel kan het best worden gebruikt in combinatie met een harde, weinig poreuze baksteen en welke met een zachte, poreuze baksteen?

Onder een harde dichte steen wordt een steen verstaan die een lage porositeit heeft en daardoor ook vaak een grotere druksterkte. Een bij hoge temperatuur gebakken steen heeft relatief grote poriën, maar het aantal poriën is kleiner dan bij een op lagere temperatuur gebakken steen van dezelfde klei, waardoor er sprake is van een lagere totale porositeit. Zo’n steen wordt in het algemeen omschreven als hard en weinig poreus.

Onder een zachte, poreuze baksteen kunnen we een steen verstaan met een grotere porositeit die meestal een lagere druksterkte heeft. Een bij lagere temperatuur gebakken steen heeft fijnere poriën, maar het aantal daarvan is groter, wat resulteert in een hogere totale porositeit. Zo’n steen wordt vaak omschreven als zacht of poreus en zal sneller vocht opzuigen.

Traditioneel kent de bouwpraktijk de vuistregel dat bij een harde steen ook een harde mortel en bij een zachte steen een zachte mortel gebruikt moet worden.

\footnote{zie hoofdstuk 1, § 1.1, tabel 1; met de daarin gegeven stortgewichten is deze berekening eenvoudig te maken. Dit zijn globale cijfers, dus in de literatuur vinden we soms iets afwijkende getallen, voor deze verhouding bijvoorbeeld 1430 kg zand, 130 kg kalk en 220 kg tras (Bertoldi 1987, p. 450).}
Die vuistregel moet gerelativeerd worden. Bij een zachte steen past het beste een zachte mortel. Een hardere steen verdraagt de toepassing van een hardere mortel, maar ook bij harde steen kunnen zachte mortels toegepast worden. Soms is het gewenst om ook bij de toepassing van een harde steen juist een zachte mortel te gebruiken. Wanneer vervormingen op kunnen treden is metselwerk in harde steen gebaat bij een zachte (meer flexibele) mortel.

Van belang is onder andere dat de elasticiteitsmodulus van beide materialen (mortel en steen) op elkaar afgestemd moeten zijn om te hoge inwendige spanningen als gevolg van thermische of mechanische vervormingen te vermijden. Uit een recente deelstudie in het kader van het EU-Pointing project215 is gebleken dat de thermische uitzettingscoëfficiënt van de meest gangbare mortels weliswaar ongeveer twee keer zo groot is als die van bakstenen, maar dat alleen een zuivere cementmortel blijkbaar genoeg aan de baksteen is gehecht om deze te dwingen, om deze grotere thermische uitzetting te volgen. Dit laatste verklaart sommige scha đenomenen in metselwerk met zuivere cementmortel, waarvoor zwakkere stenen uiteraard gevoeliger zijn dan sterkere.

Met betrekking tot vochttransport vormt het trasraam een goed voorbeeld. Hier kan het best een bij hoge temperatuur gebakken (harde) steen (met relatief grove poriën) worden toegepast, in combinatie met een zeer dichte, fijnporeuze mortel. Het verschil in poriën tussen mortel en steen zorgt op de grens van steen en mortel voor een onderbreking in het poriesysteem. Deze onderbreking vormt een hoge weerstand tegen vochttransport en beperkt in hoge mate de kans op optredend vocht. Het volledig met elkaar in overeenstemming brengen van de poriesystemen van steen en mortel zou hier juist averechts werken. Door steen en mortel zou een mooi op elkaar aansluitend poriesysteem worden gevormd waarin vocht weinig weerstand ondervindt.

Zie ook hoofdstuk 3 § 7.5.

Toepassing onder kritische omstandigheden

14 Kan kalk worden toegepast als er sprake is van een zoutbelasting en welk type kalkmortel is het minst gevoelig voor zoutschade?

Bij een zoutbelasting, zeker in combinatie met vocht, is de toepassing van kalkmortels (maar ook die van cementmortels) aan de nodige beperkingen gebonden. Zo is toepassing van een luchtkalk af te raden, omdat alleen al door het vocht de carbonatatie en daarmee de verharding verhinderd wordt.

215 Hayen 2001 II.
Welke kalkmortel het minst gevoelig is voor zoutschade hangt uiteraard ook af van het type zout. Wanneer we uitgaan van sulfaten zijn er duidelijk risico’s verbonden aan het gebruik van luchtkalk en hydraulische kalk, met name bij sterk vochtbelaste constructies; dat wordt bij de vragen en antwoorden hieronder toegelicht. Bij de aanwezigheid van chloriden kan de kalkmortel versneld verweren (vorming en snel uitspoelen van CaCl$_2$; zie ook hoofdstuk 4). Dit verschijnsel treffen we met name aan nabij de zee. Overigens kunnen we de versnelde verwering nabij de zee ook aantreffen bij cementvoegen, want ook in cementvoegen ontstaat door carbonatatie kalk (zie hoofdstuk 3 § 7.4, formule 3a en 3b).

Bij het gebruik van een traskalkmortel wordt in principe de kalk gebonden aan de tras en worden silicaten gevormd. Het risico op zoutschade is dan geringer. Randvoorwaarde is wel dat gedurende lange tijd voldoende water aanwezig is, anders blijft de tras een inerte toeslagstof en kan de aantasting toch plaatsvinden. Ook mogen er geen (kleiachtige) verontreinigingen in de tras voorkomen. Die kunnen uiteindelijk tot de vorming van thaumasietachtige verbindingen leiden. Zolang er nog ongebonden tras is, dient zo veel mogelijk voorkomen te worden dat de kalk carbonateert. Gecarbonateerde kalk is immers niet meer beschikbaar voor de gewenste reactie tussen tras en kalk.

Zie ook vragen 15, 16, 17 hierna en hoofdstuk 4 § 3.4.

15 Welk soort zand en welke korrelgradering kan het beste gekozen worden bij zoutbelasting?

Om tot een goed onderbouwd antwoord op deze vraag te komen, moet eigenlijk nog het nodige wetenschappelijk onderzoek plaatsvinden. Er zijn echter aanwijzingen dat een schrale mortel (weinig bindmiddel) met redelijk grof, eenkoorrelig (goed gesorteerd) zand geschikt zou kunnen zijn. Tussen de korrels van dit zand (waarin alle zandkorreltjes ongeveer even groot zijn) blijft veel ruimte, die niet door bindmiddel wordt gevuld. Daardoor ontstaat een relatief grote porositeit en daarmee het vermogen tot zoutberging en droging.

Zie ook hoofdstuk 3 § 6.3.

16 Wat is het meest gunstige bindmiddeltype wanneer sprake is van een sulfaat- of chloridebelasting?

In geval van sulfaatbelasting kan met kalk als bindmiddel gips ontstaan. Wanneer in aanzienlijke mate gipsvorming optreedt kan schade door zwelling ontstaan. Bij hydraulische kalk of normaal portlandcement bestaat bij aanwezigheid van sulfaten het risico dat thaumasiet wordt gevormd, een nog sterker zwellende verbinding dan
gips. Toepassing van een sulfaatbestendig bindmiddel vormt dan de beste oplossing. Men kan bijvoorbeeld kiezen voor een hoogovencement met een portlandklinker-gehalte < 35% en een slakgehalte hoger dan 65%, of sulfaatbestendig portlandcement (met een laag C₃A-gehalte).

Sulfaatbestendig portlandcement is portlandcement met een hoog ijzergehalte. Hierdoor is het aluminium gebonden als tetra-calciumpatina-ferriet (C₄AF) en niet als C₃A. Dit cement is zeer donker van kleur.

Bij aanwezigheid van chloriden kan met cement met een hoog C₃A-gehalte Friedels zout ontstaan, terwijl uit kalkmortels Ca(OH)₂ en CaCO₃ kan uitlopen. Ook in dit geval verdient dus een cementmortel met een laag C₃A-gehalte de voorkeur. Door het gebruik van een traskalkmortel, wordt in principe de kalk gebonden aan de tras en worden silicaten gevormd. Het risico van vorming van zwellende verbindingen wordt ook daarmee verkleind. De tras moet dan wel volledig kunnen reageren (zie ook vraag 14).

Zie ook hoofdstuk 4 § 3.4 en § 3.10.

17 Zijn er drempelwaarden bekend voor het sulfaat- en chloridegehalte, waaronder het risico van de vorming van schadelijke zoutverbindingen klein is?
Nee, er zijn helaas geen limieten bekend. Bovendien speelt ook de hoeveelheid water en de duur van de vochtbelasting een belangrijke rol met betrekking tot de gemiddelde hoeveelheid en op de spreiding van het zout in het metselwerk.

18 Is hydrofoberen een goede optie om schade door zwellende zoutverbindingen te voorkomen, ook als er reeds sprake is van een zoutaantasting?
Vooropgesteld dient te worden dat aangetaste (tot vervorming leidende) mortel moet worden verwijderd. Verder zal het van veel omstandigheden afhangen of het aanbeveling verdient om de muur te hydrofoberen. Hydrofoberen moet absoluut ontraden worden als er sprake is van optrekend vocht. Het uitvoeren van een waterafstotende behandeling op een zoutbelaste ondergrond is niet absoluut onmogelijk, maar wel bijzonder riskant. Gaat het om regenwatertoetreding via het muuroppervlak, dan kan hydrofoberen een van de eventueel te overwegen maatregelen zijn. Men dient zich daarbij steeds bewust te zijn van mogelijke risico’s. Over het algemeen is – zeker zonder wetenschappelijk vooronderzoek – de behandeling niet aan te raden. Hoewel de weerstand tegen waterdamptransport als gevolg van een hydrofobering maar weinig zal toenemen, wordt transport van vloeibaar water er ernstig door gehinderd. Dat is gunstig voor het (regen)water van buiten betreft, maar bepaald ongunstig als dit water van binnen komt. Dat geldt niet alleen met betrekking tot optrekend vocht, maar ook voor water dat door bijvoorbeeld lekkages en calamiteiten in de muur terecht kan ko-
men. In dat geval zadel men het metselwerk op met een verhoogde kans op schade.

Zie ook hoofdstuk 4 § 3.4.

4 Voorbeelden uit de praktijk

Praktijkvoorbeelden kunnen slechts een beperkt aspect van de werkelijkheid belichten. Daarom is door de Rijksdienst voor de Monumentenzorg in de marge van dit boek een enquête gehouden onder een aantal bouwbedrijven. Samen met de meest voorkomende vragen is deze enquête hiervoor, in § 3.3 en § 3.4, aan de orde gekomen. In deze paragraaf wordt deze reflectie van de praktijk gecompleteerd met enkele concrete voorbeelden, waarmee de vorige hoofdstukken naar de praktijk worden vertaald en geïllustreerd.

4.1 Kademuur langs de IJssel te Deventer

De circa 210 meter lange en acht meter hoge kademuur langs de IJssel te Deventer stamt uit de zestiende en zeventiende eeuw. Van grote delen van het baksteenmetselwerk is, gelet op de verschillende soorten baksteen en voegwerk, de geschiedenis van de kademuur af te lezen. Thans is het moment aangebroken om de muur te restaureren. Vanuit de visie op de restauratie dienen twee aspecten met betrekking tot de instandhouding van het historische metselwerk tijdens de restauratie te worden verenigd, namelijk het handhaven van de historische waarde in samenhang met het bereiken van een goede technische staat van het gehele werk.

Uit de resultaten van het onderzoek bleek dat grote delen van het metselwerk los waren komen te staan van het achterliggende werk. Mogelijkheden van hergebruik van dat materiaal dienden zich daarmee aan. Een belangrijk aspect voor het bereiken van een zo getrouw mogelijk authentiek beeld. Vanuit de hier voor gestelde visie is de restauratie technisch voorbereid door onderzoek te doen. De resultaten daarvan vormen de basis van het restauratieplan.

Dat plan is met aanpassingen in de praktijk uitgevoerd. Visie en praktijk gaan niet altijd samen, zo blijkt ook in dit praktijkvoorbeeld. Dit voorbeeld illustreert vooral het belang van een goede materiaalkeuze, de keuze van de verwerking van de materialen en de manier waarop de controverse tussen theorie en praktijk moet worden overwonnen.

Een zestiende- en zeventiende-eeuwse kademuur is een interessant object. Het object is tot stand gekomen en in staat gehouden met gebruikmaking van materialen die toen voorhanden waren. De diversiteit daarvan is evident. De kademuur is gedurende eeuwen door tal van variabele krachten belast geweest. Als waterkerend werk weert
hij water en weerstaat hij de stromende werking daarvan en het schurende ijs in de winter. De hitte van de zon in de zomer en de vrieskou van de winter doen hem uitzetten en krimpen. Daarnaast moet dit waterkerende werk ook de mechanische schade kunnen verduren, die ontstaat door het aanleggen van schepen. Op de kademuur vestigen zich muurbegroeiingen van velerlei aard.

Wanneer een dergelijk object wordt gerestaureerd, dan moet onder andere inzicht worden verkregen in de staat waarin de muur verkeert en in de gebruikte historische en (sub)recente materialen.

Van de kademuur zijn fotogrammetrische opnamen gemaakt, die zijn gebruikt voor het vastleggen van de onderzoeksgesgevens maar ook voor het aangeven op welke wijze het herstel plaats moest vinden.

De staat van de te restaureren kademuur in Deventer is vastgesteld door middel van visuele inspectie maar ook door goed te luisteren naar de klank bij het bekloppen van de muur. De klank is een duidelijke indicatie voor het wel dan niet aanwezig zijn van homogeen metselwerk.

Op basis van deze onderzoeksresultaten zijn voor de gehele muur restauratieprotocollen opgesteld. In Deventer zijn de volgende protocollen gehanteerd:

– niets doen,
– alleen voegwerk herstellen,
– klein halfsteens inboetwerk verrichten en
– grote, tot drie stenen diepe inboetingen tot stand brengen

Het materiaalkundige onderzoek ten behoeve van de inventarisatie van de materialen is in Deventer uitgevoerd in de vorm van visuele inspecties en petrografisch onderzoek. De verschillende soorten baksteen en de afmetingen daarvan zijn vastgelegd door ze te meten. Het petrografisch onderzoek leverde belangrijke gegevens op over de samenstelling van zowel de verschillende baksteensoorten als de mortelsoorten die in de loop van eeuwen zijn gebruikt. De keuze van de bemonsteringslocaties voor het petrografisch onderzoek is bepaald door de zichtbare aanwezigheid van de verschillende baksteensoorten.

Telkens is per bemonsteringslocatie de mortel en de baksteen separatw bemonsterd en onderzocht. In totaal zijn, verdeeld over de gehele lengte en hoogte van de muur, vijftien kernen geboord, waaruit dertig dunne doorsneden zijn vervaardigd ten behoeve van het petrografisch onderzoek. De vijftien mortelmonster en de vijftien baksteenmonster zijn onder vacuüm geïmpregneerd met een fluores-
cerende hars, opdat de open structuren in beide materialen zichtbaar gemaakt konden worden tijdens het microscopische en fluorescentieonderzoek.

Van iedere gebruikte mortel is vastgesteld welk bindmiddel is gebruikt, wat de verhouding is tussen de hoeveelheid bindmiddel en toeslagzand, welke verouderingsverschijnselen aanwezig zijn en hoe de poriën zijn verdeeld. Van iedere gebruikte soort baksteen is de vorm van de poriën bepaald en de wijze waarop deze al dan niet met elkaar zijn verbonden.

Na deze materiaalkundige inventarisatie is de zoektocht begonnen naar geschikte nieuwe bakstenen voor het inboetwerk en is een keuze gemaakt voor de toe te passen mortel. Bij deze materiaalkeuze hebben twee uitgangspunten centraal gestaan. Het eerste werd gevormd door de eigenschappen van de historische materialen, zoals dat uit het onderzoek is gebleken. Het tweede was het streven naar een optimaal hygrisch huwelijk tussen oude en nieuwe materialen. Daar grote delen van de muur moeten worden vervangen en ingeboet is het immers van het grootste belang dat het water- en damptransport zowel door origineel als door nieuw werk ongehinderd kan blijven plaatsvinden.

Uit het onderzoek kwam naar voren dat de originele baksteen een kwaliteit heeft die we op de bouwplaats vaak als boerengrauw omschrijven (globaal overeenkomend met kwaliteit B2 volgens de vigerende norm) en dat een zeer vette kalkmortel toegepast is. Inboetingen van latere datum bestonden vaak uit klinkerachtige bakstenen, gemetseld in cementmortel. Ten gevolge van de te grote verschillen tussen de oorspronkelijke en nieuwe materialen, vertonen dergelijke inboetingen grote schade aan het metselwerk, waardoor ze geheel vervangen moesten worden. Het was evident dat deze fout niet herhaald mocht worden en gezocht moest worden naar een meer verantwoorde materiaalkeuze.

De originele bakstenen in de kwaliteit boerengrauw blijken niet gesorteerd te zijn op afmeting. Hierdoor zijn relatief grote verschillen in de strekkenmaat aanwezig, alsmede in de dikte van de baksteen. Moderne stenen ten behoeve van het inboetwerk zijn echter wel gesorteerd op maat. Bovendien heeft niet het gehele oude baksel de kwaliteit boerengrauw, maar zijn verschillen in hardheden aanwezig. De kwaliteit boerengrauw is een gemiddelde van het geheel. Verschillen in hardheid zijn inherent aan verschil in afmeting.

Hier doemt dus een controverse op tussen materiaalkundige eisen op basis van origineel materiaal en aard en beschikbaarheid van nieuwe materialen. Onderzoek aan potentieel toepasbare nieuwe bakstenen en vergelijking van de onderzoeksresultaten met die van de originele bakstenen bepaalt uiteindelijk de keuze van
de inboetsteen. De keuze is dus een compromis tussen de technisch meest optimale eisen en beschikbaarheid op de markt, waarbij financiële overwegingen uiteraard ook een rol spelen. Er moet noodzakelijkerwijs sprake zijn van een compromis. Technisch optimale bakstenen kunnen wellicht nog wel gemaakt worden, maar zijn als gevolg van marktmechanismen niet of slechts tegen zeer hoge kosten verkrijgbaar. De herbruikbare bakstenen van het desbetreffende object zijn meestal wel technisch optimale bakstenen. Ook stenen van andere, (deels) gesloopte objecten dienen op hun toepasbaarheid als inboetsteen te worden onderzocht. Hier blijkt dat theorie, een aspect binnen de planvoorbereiding, niet altijd samen kan gaan met de praktijk bij de planuitvoering.

Meer flexibiliteit is mogelijk bij de keuze van de soort mortel omdat deze zich beter laat variëren. De resultaten van het petrografisch mortelonderzoek kunnen de basis zijn van de nieuwe mortel, gebaseerd op het originele recept, zo mogelijk nog iets aangepast aan moderne inboetstenen. Echter ook bij de keuze van de mortel moet ervan worden uitgegaan dat er zo weinig mogelijk verschillende soorten mortel voor de restauratie worden gebruikt. In de bouwlogistiek zou dat niet zo handig zijn.

Bij omvangrijke restauraties, zoals bijvoorbeeld van de kademuur te Gorinchem, is het logisch dat meerdere mortels gebruikt worden. Daar zijn deze geheel gebaseerd op de aangetroffen, historische materialen en in het verleden uitgevoerde restauraties. Bij kleinere restauraties, zoals in Deventer het geval is, moet zo mogelijk gezocht worden naar één mortel, waarmee bovendien kan worden gemetseld en kan worden doorgestreken, of plaatselijk gevoegd.

In Deventer is uiteindelijk, het baksteenmateriaal en de oude mortel kennende, gekozen voor een mortel op basis van gelijke hoeveelheden zand en schelpkalk, die sterk verrijkt is met tras waaraan een weinig hoogovencement is toegevoegd. Het cement zorgt voor de vereiste beginsterkte van het metsel- en voegwerk. Slechts een week na de voltooiing van de restauratie wordt de droog gemalen bouwkuij afgebroken en zal het water van de IJssel langs het nog verse metselwerk stromen en zullen de door de scheepvaart veroorzaakte golven er tegen slaan.

De bouwlogistiek is hier dus bepalend geweest voor de keuze van de toevoeging van het cement. De tras zorgt voor de verdere sterkteontwikkeling van deze waterkerende muur, waarbij juist de waterbelasting van de muur gunstig is voor de puzzolane reacties van de tras. Hier is dus onder andere de functie van het te restaureren object bepalend geweest bij de keuze van de belangrijkste hydraulische
hulpstof in de schelpkalkmortel. Bovendien draagt de tras bij tot een goede verwerkbaarheid van de mortel, hetgeen een niet onbelangrijke eis is.

Samenvattend illustreert dit praktijkvoorbeeld in Deventer het volgende:

– Er bestaat vaak een discrepantie tussen de visie op een restauratie (werkzaamheden) en de praktische uitvoering van de restauratie (steiger), bijvoorbeeld omdat behoud van onaangeroerd origineel materiaal vaak niet mogelijk is (maar wel het hergebruik daarvan),

– Er bestaat vaak een discrepantie tussen de materiaalkundige eigenschappen van de originele materialen en van de benodigde nieuwe materialen, die doorgaans industrieel zijn vervaardigd,

– De keuze van de nieuwe materialen wordt bepaald door:
 – eigenschappen van originele materialen (uitgangspunt),
 – verkrijgbaarheid van (hergebruik)materialen,
 – eigenschappen van industrieel vervaardigde materialen,
 – de prijs van aan te kopen materialen,
 – de functie van het te restaureren object en
 – de bouwlogistiek, inclusief verwerkbaarheid van de materialen,

– De keuze van de mortel is flexibeler dan van industriële bakstenen,

– De oorspronkelijke restauratievisie kan door een verantwoorde materiaalkeuze, in combinatie met een pragmatische benadering op basis van bouwpraktijk toch behouden blijven en worden uitgevoerd.

4.2 Molen van Oelegem

De kenmerkende problematiek van het insijpelen van water door de vaak hellende rompen van windmolens en de daarmee vaak gepaard gaande gekantelde ligging van de bakstenen, is voor de moleneigenaren en de bevoegde instanties een kwestie
van voortdurende zorg. In 1995 heeft de Vlaamse Administratie bevoegd voor de Monumentenzorg getracht de problematiek van de waterinsijpeling in de molenromp aan de orde te stellen en hieruit zijn in de laatste jaren een aantal wijzigingen in de uitvoeringspraktijk uit voortgekomen.

Allereerst gaat men tegenwoordig uit van het concept van bevochtigen en drogen, dat wil zeggen dat men niet meer al het mogelijke doet om de bevochtiging van de molenromp volledig tegen te gaan – wat men in het verleden met veel noodlottige gevolgen heeft proberen te bereiken door het vervangen van de kalkvoeg door een cementvoeg. Men was zich toen nog niet bewust van het feit dat juist het aanbrengen van een cementvoeg op een ondergrond bestaande uit kalkmortel, een extra complicatie met zich mee kan brengen. Tegenwoordig is men meer de theorie toegedaan dat metselwerk wel vochtig mag worden maar het moet goed kunnen drogen. Zorg voor een goede vochtbalans in het metselwerk! Dat is een andere benadering dan het absoluut voorkomen van het nat worden van het metselwerk. Na regen komt immers zonneschijn: het is in onze streken altijd nog langer droog dan nat. Maar hoe kan die goede vochtbalans worden bereikt?

De opbouw van de gevelafwerking die onder andere bij de restauratie van de molen van Oelegem toegepast werd is hier erg informatief.

Bij de restauratie in 1997-'98 werd voor het herstel van het buitenmetselwerk van de hellende molenromp een systeem uitgewerkt dat bestond uit het verwijderen van de cementvoegen en het vervangen van deze door een voegmortel op basis van kalk. In dit geval werd hydraulische kalk gebruikt. Daarna werd de hellende molenromp gekaleid. Kaleien wil zeggen dat men de molenromp aansmeert met een mengsel dat voor 95% uit kalk bestaat en daarnaast uit een fijne zandfractie om de zo gevormde kalkverf wat te verdikken. Dit mengsel heeft de eigenschap

216 Vergelijk de geschetste praktijken in Groot 2002.
van blijvend flexibel te zijn, haarscheuren en scheurtjes te kunnen dichten om zo-doende te beletten dat regenwater in het metselwerk kan doordringen. Naast deze scheurvullende eigenschap staat dit kalkmengsel ook bekend als een buitenafwerking die zeer dampopen is. Het in de molenromp aanwezige water kan vooral bij dro-gend weer goed uitdampen. Veel historische gebouwen werden in het verleden op deze wijze afgewerkt, bijna jaarlijks werd de kaleikwast gehanteerd. Deze wijze van onderhoud is enigermaate arbeidsintensief. Om daaraan tegemoet te komen werd in het geval van de molen van Oelegem besloten om over op de kaleilaag nog een laag minerale verf (silicaatverf) aan te brengen. Silicaatverf is iets duurzamer dan het kaleiwerk. Door zijn minerale binding, net als kalk, heeft het eveneens een open structuur die sterk dampdoorlatend is. Naast het grote belang van het kiezen van een zo dampopen mogelijke afwerking hebben ook de kosten van onderhoud een belangrijke rol gespeeld in het totaal van alle afwegingen.

4.3 Begijnhof in Hoogstraten

Het begijnhof van Hoogstraten is een typisch voorbeeld van een Vlaams begijnhof en staat sinds 1998 op de Wereld Erfgoed Lijst, samen met twaalf andere begijnho-ven. Het begijnhof van Hoogstraten is een voorbeeld van een begijnhof van het stadstype. Het werd recent gerestaureerd door een dynamische groep nieuwe bewoners en vrijwilligers en door een aantal vakbekwame restaurateurs met de steun van de Vlaamse Administratie voor de Monumenten en Landschappen. Bij de res-tauratie van de begijnhofhuisjes werd kalk in verschillende vormen gebruikt.

Vandaag heeft het begijnhof van Hoogstraten zijn rust en charme herwon-nen. De muren verbergen niet meer het leven van de begijnen maar dat van een groep mensen die het inzicht had om het begijnhof weer leven in te blazen en de plek opnieuw een ziel te geven, waaraan de witgekalkte gevels hun deel bijdragen. Kalk was één van de materialen die werden gebruikt bij de restauratie van het be-gijnhof.
Kalk werd allereerst toegepast voor het vervaardigen van de voegmortel. Waar nodig werden de slechte voegen voldoende diep uitgenomen en werd een voegmortel op basis van één volumedeel hydraulische kalk op drie volumedelen zand toegepast. De voegmortel werd op kleur gebracht door het toevoegen van een beetje oker, een natuurlijk aardpigment dat bestand is tegen de hoge alkaliteit van de kalkmortel.

![Figuur 52](image)

Het Begijnhof te Hoogstraten na voltooiing van het werk. © Lhoist

Daarnaast vond kalk toepassing voor het pleisteren en ook kaleien van de gevels. Het witte karakter van de gevels van het begijnhof noopten de restaurateurs om sommige gevels opnieuw te pleisteren. Hierbij werd gekozen voor een bestaand pleistersysteem op basis van hydraulische kalk. Een onderlaag werd afgewerkt met een dunne bovenlaag die in bepaalde gevallen nog werd overschilderd met een luchthardende kalkverf of met een minerale verf (silicaatverf).

Voor sommige andere geveldelen werd gekozen voor het kaleien of slemmen van de gevels (zie § 4.2). Het aanbrengen van deze uit de historie bekende gevelafwerking heeft een belangrijke bijdrage geleverd aan het historische karakter van het begijnhof van Hoogstraten.

4.4 Molen De Walvis te Schiedam

In september 1996 ontstond brand op een van de zolders van de in 1794 met kalkmortel gemetselde stellingmolen *De Walvis* te Schiedam. Binnen korte tijd stonden de houten zolders in lichterlaag, die na enige tijd brandend op de begane grond stortten. De houten kapconstructie was toen al in vlammen opgegaan. Houten
luiken en deuren verbrandden eveneens, door de sterke schoorsteenwerking bleek de brand fors aangewakkerd te worden. De temperatuur moet volgens de brandweer opgelopen zijn tot circa 900 °C. Drie kwartier later was de brand geblust. Maar ook gedeelten van de buitenste zone van het in kalk gemetselde werk aan de binnenzijde van de romp bleek op bijzonder wijze geblust te zijn, zoals later bij microscopisch onderzoek van mortelmonsters van de romp was te zien.

Ten behoeve van het herstel van De Walvis is onderzoek gedaan aan de kalkmortels en is een hersteladvies gegeven. Dit onderzoek illustreerde wat de gevolgen zijn van een hevige brand op kalkmortels. Want wat gebeurt er bij een hevige brand? De gecarbonateerde historische kalkmortel is te beschouwen als een (zandhoudende) kalksteen, die gebrand wordt, waardoor ongebluste kalk ontstaat. Het bluswater van de brandweer reageert met de ongebluste kalk, waardoor gebluste kalk ontstaat: het bindmiddel kalk, dat vervolgens weer met koolzuurgas uit de atmosfeer gaat reageren en daarna weer begint te carbonateren. Maar er gebeurt nog iets: het branden van de gecarbonateerde kalkmortel heeft een volumeverkleining tot gevolg, waardoor de metselmortel van de baksteen los komt, het blussen daarentegen heeft een volumevergroting tot gevolg, waardoor de gebluste mortel uit het metselwerk zwelt. Bovendien zijn de bakstenen ook sterk verhit en snel door bluswater gekoeld, waardoor ook nog eens de buitenste zone van de bakstenen is gaan spatten.

De omvang van de degradatiezone van baksteen en metselmortel is met petrografisch onderzoek (zie § 1.3) vastgesteld. Bovendien kon met het petro-
grafisch onderzoek ook de mortelsamenstelling van niet door brand aangetaste mortel worden bepaald en kon een hersteladvies worden gegeven. Bij die reconstructie is aan de binnenzijde de zone gedegraded metselwerk verwijderd en zijn de bovenste lagen verwoest metselwerk gesloopt en vervangen door nieuw metselwerk. Daarbij werd gebruik gemaakt van de aangetroffen mortelsamenstelling, een mortel van traskalk en zand in een verhouding van één staat tot twee. Zo veel als mogelijk was zijn intacte stenen van de buitenzijde van de romp opnieuw gebruikt. De nieuwe bakstenen die in de bovenste lagen moesten worden verwerkt zijn onderzocht op hun compatibiliteit met de aanwezige historische stenen. De korrelgrootteverdeling van het zand in de historische mortel kwam overeen met die van duinzand. Daarom is zand met een vergelijkbare zeefkromme gebruikt als verschralingsmiddel van de mortel. Op grond van de korrelgrootteverdeling van het historische zand bleek de authentieke mortel een licht vette mortel te zijn.

Omdat de binnenzijde van de romp na het verwijderen van de gedegradeerde bakstenen en mortel weer een toonbaar uiterlijk moest krijgen, is deze afgewerkt met een pleistermortel, die compatibel moest zijn met de historische materialen. Er is gekozen voor een kalkpleistermortel, waaraan zand is toegevoegd met een korrelgrootte < 1 mm. De bindmiddel-toeslagverhouding van deze mortel was twee staat tot drie. Daar waar het metselwerk niet gedegradeerd was, maar slechts roetschade vertoonde, is de roetlaag door stralen met olivien onder lage druk verwijderd. Daarna zijn ook de gereinigde plaatsen (dun) gepleisterd.

4.5 Vensters van de Eben Haezerkerk te Scheveningen

In de Eben Heazerkerk te Scheveningen verkeerden het rozetvenster en het maaswerkvenster in zeer slechte staat. Het metselwerk van gebakken profielsteenjes vertoonde door een sterke zoutbelasting ernstige schade. Bovendien hadden roestende ijzeren brugstaven plaatselijk het metselwerk uiteen gedrukt. De latex verflaag, waarmee getracht was de beginnende schade te camoufleren, was bijna geheel van de zoutbelaste ondergrond afgedrukt. Daar waar deze afsluitende laag nog aanwezig was, bleek deze zeer slecht gehecht te zijn op de baksteen. Tussen baksteen en latex had zich een laagje bouwschadelijke zouten afgezet. Dit dramatische schadebeeld van beide vensters noopte tot restauratie, waartoe een restauratieadvies moest worden gegeven.

Ten grondslag aan het restauratieadvies lag een vocht- en zoutonderzoek aan het metselwerk en een onderzoek naar de samenstelling van de mortel. Het bleek hier
om een kalkmortel te gaan. De gebruikte baksteentjes waren voorgevormd gebakken.

Geconstateerd werd dat het metselwerk plaatselijk zeer sterk met vocht en zout belast was. De aangetroffen zouten bestonden hoofdzakelijk uit natriumchloride (zeezout), hetgeen gezien de ligging van het object natuurlijk geen verrassing was. De mortel bleek een traskalkmortel te zijn, met een bindmiddel-toeslagverhouding tussen 2 : 3 en 1 : 2. De baksteentjes waren poreus en dus zacht gebakken. Gezien de korrelopbouw van het zand (< 1 mm, met een gemiddelde korrelgrootte van 0,7 mm) was tijdens de bouw een licht schrale mortel toegepast. De open poriën in deze mortel waren in de sterk zoutbelaste delen van het metselwerk geheel of gedeeltelijk opgevuld met zout.

Omdat behoud van zoveel mogelijk origineel materiaal centraal stond bij deze restauratie, zijn bakstenen en een metselmortel geadviseerd, die compatibel zijn met de originele materialen. Als vanzelfsprekend is het roestende ijzer vervangen door niet roestend metaal, brons in dit geval. De restauratie is in nauwe samenwerking tussen glazenier en metselaar uitgevoerd, nadat enkele venstertjes van de glas-in-loodramen in het atelier van de glazenier waren hersteld. De latex is geheel verwijderd en na restauratie is ervoor gekozen het metselwerk niet meer te schilderen.

De toepassing van een licht schrale mortel is in dit geval de meest optimale keuze, omdat het zout zonder verder schade te veroorzaken aan het metselwerk kan uit treden. In overleg met de kerkvoogdij is een beheersplan opgesteld, dat onder andere voorziet in het wekelijks droog verwijderen van de uitgebroeide zouten. Beide ramen zijn thans weer een lust voor het oog.
Nawoord

Indien de auteurs van het boek zich tot doel hadden gesteld om u alles te willen vertellen dat u over kalk voor mortel in de restauratiepraktijk had willen weten, dan zouden ze daar zeker niet in geslaagd zijn. Een deel van de kennis behoort tot specifieke en specialistische werkterreinen en laat zich in een boek als dit – dat zich immers richt tot een brede groep van betrokkenen bij de bouwpraktijk – slechts in algemene bewoordingen benaderen. Een ander deel van de kennis moet nog worden vergaard. Zoals bij elk probleem geldt immers dat onderzoek niet alleen leidt tot antwoorden, maar vooral ook tot tal van nieuwe vragen en problemen. Ten slotte zult u wellicht aan het einde van dit boek beter dan voordien weten welke vraag u nu graag beantwoord zou willen zien. Dit boek is dan ook een uitnodiging voor een zoektocht waarin anderen zijn voorgegaan. Niet alleen in het verleden maar ook vandaag werken verschillende disciplines met kalkmortel, steunend op een jarenlange ervaring, op overgeleverde tradities of op degelijk wetenschappelijk onderzoek.

De premisse van het boek is uiteraard dat de Rijksdienst voor de Monumentenzorg met de auteurs van het boek ervan overtuigd is dat meer weten over kalk de restauratiepraktijk zeker ten goede komt. Wellicht is deze informatie niet alleen voor de monumentenzorg nuttig maar kunnen bouwlieden, ingenieurs, architecten en ambachtslieden in de hele bouwsector er iets wijzer van worden.

Daartoe hebben we eerst moeten toelichten wat kalkmortel precies is en hoe het gebruik van kalk bijdraagt tot het in stand houden van de authenticiteit van monumenten. De betrokkenheid bij de duurzame ontwikkeling van onze maatschappij, rekening houdend met de omgeving en het milieu werd ook ingebracht in de evaluatie van de doelen waarvoor kalk best kan worden ingezet.

Kalk is een eeuwenoud materiaal waarmee we in het begin van de éénentwintigste eeuw niet meer zo vertrouwd zijn. Onderzoek van historici helpt ons om in de tijd terug te gaan en verloren geraakte of gewaande kennis over de toepassing van kalk te (her)ontdekken. De vaststelling dat kalkmortel in zoveel historische gebouwen en in archeologische vindplaatsen wordt aangetroffen toont op zich al
aan dat onze voorouders weet hadden van het duurzaam gebruik van kalkmortel. We hebben daarom de geschiedenis van het gebruik en de kennis van kalk willen schetsen van de klassieke tijd tot de tijd van de opkomst van het cement, waarin kalk wat in de vergeetboek terechtkwam.

Tegenwoordig kunnen we, dankzij de moderne natuurwetenschappen, bepaalde aspecten aangaande het gebruik van kalk beter begrijpen dan onze voorouders. Dat stelt ons in staat om op een andere wijze de productie en het gebruik van kalk toe te lichten dan bijvoorbeeld Vitruvius dat in de eerste eeuw deed. Het hoofdstuk *Van grondstof tot mortel* geeft aan hoe verschillende soorten kalk worden geproduceerd, met wat ze kunnen worden verwerkt om mortel te verkrijgen en wat bijgevolg de verschillende eigenschappen zijn. Ook de uithardingsprocessen van luchthardende en hydraulische kalk werden uitgezet.

In de monumentenzorg stellen we ook vast dat materialen verweren. Het beter leren kennen van de processen die tot verwering leiden, draagt ook bij tot de opbouw van kennis om degradatie tegen te gaan of te vermijden. Omgevingsinvloeden bepalen ook wat *kan* en wat *niet kan*. Zo zijn bepaalde soorten kalk meer geschikt voor bepaalde toepassingen dan andere en in bepaalde gevallen is kalk niet eens aan te bevelen als bindmiddel voor mortel. Het hoofdstuk over omgevingsinvloeden en degradatie geeft hierover meer inzicht.

De restauratiepraktijk gaat uit van een bepaalde methodiek waarbij een juiste toepassing van kalkmortel is gebaseerd op kennis van de randvoorwaarden die het gebruik van dit materiaal mogelijk of aanbevelenswaardig maken. Uit vooronderzoek en een duidelijk beeld van de eisen die aan de mortel moeten worden gesteld kunnen dan richtlijnen gegeven worden over de samenstelling van een goede reparatiemortel. Enkele praktijkvoorbeelden aan het einde van het boek laten zien hoe recent in restauraties kalkmortel werd toegepast. Het is uiteindelijk in de praktijk dat inzichten vorm krijgen en dat discussies gevoerd worden tussen partijen op de bouwplaats.

Kalk is geen *haarlemmerolie*. Dat geldt niet alleen ten aanzien van eigenschappen als compatibiliteit en duurzaamheid, maar ook voor eigenschappen als werkbaarheid en de implicaties die de toepassing van deze grondstof kan hebben voor het bouwproces. Gebruik van kalk zal met zich meebrengen dat de metselaar en de voeger moeten leren om met kalkmortels om te gaan en dat de aannemer in zijn planning rekening moet houden met aspecten als de tragere verharding en de gevoeligheid voor verbranden. Zoals bij alle onbekende zaken zal ook bij de herin- troductie van kalk op de bouwplaats een zekere weerstand overwonnen moeten worden. Het omgaan met monumenten vraagt in de eerste plaats om respect voor dat erfgoed, ook respect voor het erfgoed dat wordt gevormd door het traditionele
Nawoord

ambiacht. Op grond van dat respect mag worden verlangd dat ambachtslieden en aannemers die weerstand voor het onbekende overwinnen en de moeite nemen om met dat aanvankelijk wellicht lastig gevonden product om te gaan. Dat is althans een van de belangrijkste oproepen die dit boek impliciet doet.

Het doet die oproep ook vanuit een overtuiging. We behouden monumenten opdat wij ervan kunnen genieten, maar we behouden ze wellicht nog meer, om ze aan een volgende generatie door te kunnen geven, zo gaaf, zo ongeschonden, zo authentiek als mogelijk is. Behalve als belangrijke positieve factor voor de leefbare stad, voor de belevingswaarde, is uitdrukkelijk ook het behoud van monumenten als authentieke historische documenten van groot belang. De ervaring leert dat een eenzijdige keuze voor cementmortels niet bevorderlijk is voor een zo authentiek mogelijk behoud. De ervaring leert ook dat kalkmortels compatibel en duurzaam kunnen zijn. Wij hopen dat dit boek eraan bijdraagt dat onze monumenten met meer respect en maximale authenticiteit behouden kunnen worden. De overtuiging is dat toepassing van kalk daaraan een belangrijke bijdrage kan leveren.
7

Aanhangsel
Figuur 54
Een wel zeer extreem voorbeeld van onzorgvuldig verwijderde voegen.

Figuur 55 (pagina 248)
Detail van een zestiende-eeuwse gevel in Veere. De *straffer lugt beset met zeedampen*, waarvan Bommenee spreekt, mag dan wel een belangrijke factor in de degradatie van het monument vormen, de veel recentere schoorsteen is, door zouten afkomstig uit de rookgassen en ongelijkmatige regenbelasting, aanmerkelijk krom getrokken.
Het testament van Adriaan Bommenee

Bijlage 1

Handelende van meteelmateriaal en van metselwerken in soort, soo van voorgaande tijden als van deze jegenwoordige tijd.

Soo veel de kalk aangaat die heeden alhier te lande gebruukt werd, bestaat in 2eley soort, namentlijk: kalk gebrant van steen en kalk gebrant van zee-schelpen.

Kalk die gebrant werd van steen en hier te lande verwert wert, is 3erley in zijn soort als Doornixse steenkalk, die wordt gebrant van zwarte Doornixse steen, gelijk aan de zeewerken aan 't eyland Walcheren somtijds werd gebruukt voor sinksteen, en deselve wordt gestookt met Carlarooyse koolen, en deselve koolen kalk siet seer grauw en komt alhier te lande gebluust en ongebluust. Deese kalk werd veel gebruukt tot waterwerken als aan steene kaayen, zeemuren, steene sluysen en tot fondamenten onder huysen en schueren en voor regenbakken, edog in gans Oostenrijk en Frans Vlaanderen werd geen andere kalk verwert als Doornixse kalk, soo aan waterbakken als aan opstaande gebouwen. Den assen van deze kalk is extra goet om in den grondt meede te werken, soo aan waterwerken als aan fondamenten van gebouwen dat geen dag en siet en nat van gront is. Doe ik heb bij ondervinding dat in voorige tijden op drooge gronden en fondamenten sij aangelegd van opgaande gebouwen 2, 3, ja 4 laagen dik in zavel in de plaas van in kalkmortel.

In Vlaanderen strijkt men de soomen en vorsten met deze kalk, soo tiggel, schalie als pannenda, maar deselve Doornixse kalk is daartoe niet bruikbaar, of men moet deselve mengen met korte kalk. Mants dan overgemeeten werd, soo moet deselve als bovenso genoemtlaat te vallen en dan vriest het alles af. Als sij dan overgemeeten werd, soo moet deselve als bovenso genoemtlaat te vallen en dan vriest het alles af. Als men den Doornixsen kalk alhier te lande verwert aan opgaande gebouwen, soo sijn de voegen en in den winter vallen de scheurtjes vol waater en dan vriest het alles af. Als men deselve begeert te gebruiken aan daaken, soo vereyst deselve om behandelt te werden als de booven-gemelde Doornixse kalk. En de as die van deze kalk komt heeft meede een goet gebruik onder waater of in den grondt buyten de lugt. De 3 soort van steenkalk komt van Luyk, en die wert gebruikt van witaghtige grauw steen en daarvan is te Dordereght te stapel alhier in de Neederlanden af. En desse is de voornaamste steenkalk die alhier te lande gebruikt werd. En wert ook seer bequaam gehoordeelt bij veele voor alle werken in alle soorten. De Sausinse kalk heeft met de Luyksche kalk seer veel raapport en overeenkomst, soo in sijn aart, als in sijn gebruik.

Alle deese soorten van kalk die vallen t' allen tijd niet even goet. 't Is ook al na [dat] de steen valt en na dat deselve gestookt wordt. Want ik hebbe ondervonden dat de kalk in 't blussen doof was derhalve dan weynighe komt te sichten, soo is deselve te veel gebrandt. En soo daar veel steenen in sijn die niet blussen willen, soo is de kalk te weynig gebrandt. En ook na dat er reegen valt in 't branden.

Deese 3erley steenkalk werden veel gebruikt in de quartieren daar de selve vallen om de landen met te misten.

Men segt voor een algemeen spreekwoordt: 'De materiaele sijn soo goet niet meer als in de voorige tijden.' Contraary is waarheyd: ten opsigte van de kalk sijn de materiaele soo goet niet meer als in de voorige tijden. 'De materiaele sijn soo goet niet meer als in de voorige tijden.' Contrary is waarheyd: ten opsigtte van de kalk sijn de materiaele soo goet als in voorige tijden, maar nu heeden soo werden alhier de materiaelen van kalk, tras, sand, etc., soo niet behandelt als in oude teijden, gelijk heeden nog geschiedt in Vlaanderen, Brabandt, Henegouw, Naamen, Luyk en in de verdere Waalse provincien en als ook in Vrankereijk en op eenige plaatsen in Hollandt.

Alle kalk van steen gebrant, moet eerst met waater op sijn pas en [orders] werden nat gemaakt en dan oopen geschooten en dan volgende dag gekeert. Als sij dan overgemeeten werdt, soo moet deselve als de kalk goet is, de helft vermeerdert sijn. Dan de kalk met kleene partijen gedaan in een houten bak en deselve dunne gemaakt met vers waater, en geroert tot dune modder en dan deselve laaten afloopen in een grootte put in den grondt daartoe gemaakt met een houte of steene kasse daarin en die put vol sijnde, soo is 't nooit in den grondt daarnaast te een dito put te
maaken om ′t dunne daarin af te laten loopen en laat-

dan beyde die putten overdeekken met landt en soo
legen een alf jaar of een geheel of nog langer, soo sal
de laaggemelde kalk in de put daar de dunne sal in
overgelooopen zijn als de kalk in den andere put want

dar sal al de seem van de kalk in sitten: dat is de vet-
tigheyt van d′ selve.

Dan deselve gemengt met tras of met tras en
sandt of met sant alleen nadat ′t werk sal koomen te
vereysschen dat men daarmede soo algeeren te maak-
ken. Maar dat moet men deselve wel dooreen mengen,
doorsteeken en plaamen 2 a 3 daagen aandenandere;
dan sal de mortel goet sijn.

Maar hoedaanig handelt men nu daarmede bij

De tweede soort is kalk gebrandt van zeeschul-
pen, en werden gestookt met Vriesschen of Gronniger
turf.

De deel kalk gebrandt van zeeschelpen, en werden gestookt met Vriesschen of Gronniger turf.

De zeeschelpen werden meest gehaalde op de
sijstrant van Hollandt, gereekent van bij Schevelingen
tot bij en ontrent Tessel etc. en langs de Vriesse kusten
daar werden de schelpen opgehaald van ′t strant ofte
tot bij en ontrent Tessel etc. en langs de Vriesse kusten

De reeden dat deese attestatie sijn in de wee-

tijd sijn weederhelft is gefortificeert aan de noortwest-
kant, dat de gemelde leggen aan de regeering te Helvoetsluys directoor over de fortificatien

Alle gemelde attestatien sijn gedrukt en van

der afduisels heeft gemelde heer Lelyveldt eene gege-

De reeden dat dese attestatie sijn in de wee-

Er zijn voorgaan diverse attestatien van particuliere werkbaasen in Hollandt, die

De deel kalk gebrandt van zeeschelpen, en werden gestookt met Vriesschen of Gronniger turf.

De zeeschelpen werden meest gehaalde op de
sijstrant van Hollandt, gereekent van bij Schevelingen
tot bij en ontrent Tessel etc. en langs de Vriesse kusten
daar werden de schelpen opgehaald van ′t strant ofte
tot bij en ontrent Tessel etc. en langs de Vriesse kusten

De deel kalk gebrandt van zeeschelpen, en werden gestookt met Vriesschen of Gronniger turf.
Aanhangsel

Alle waterwerk dat gemaakt werdt met kalk, die gemengt moet sijn met zement, daar men hier te landen toe gebruukt tras, daar men ordinaer in een sak steenkalk een alve sak tras doet, maar ik meen bij ondervinding dat den tras tot sulken werk te veel gemenacicert werdt; ik seg dat dan ordinaer de mortel te vet valdt, derhalve soo meyne dat in waterwerk verheyst voor sterken tramsmortel in 4 sakken steenkalk 3 sakken tras.

Maar als imandt werk na den eys maakt als een goet argiteck, soo is men al veel te kosbaar, vooral daar een schraale kas is.

Ik hebbe bij ondervinding dat in schelpkalk, die schraalder is als steenkalk, genoeg is als men in een sak kalk menght een alve sak tras voor sterken tramsmortel voor waterwerken.

Tras of duyfsteen komt van booven uyt Duyseland en wel meest uyt het boovengedeelte van ’t graafschap Bentem. Sij is seer grauw van coleur. Sij komt sedel af in grooter stukken als straatsteenen. De Dorrecht en te Gornighem etc. wert die steen gestamp door wintmoolens en, dan gesift; in Vrieslandt gebrooken met breekmoolens die met paarden gaan.

Fijn aas van Engelse, Schotse, Luuyse, Naamse of Carlaroyse koolen etc., feijn gestamp en gesift en onder een sak kalk gemengt [in plaas van tras] een vierde sant en een 4 van de gemelde kookas en dat wel doorbout en doorstookten, versteent extraordinair hart als tras[-]mortel en is seer bequaam om kassen voor doorbout en doorstooken, versteent extraordinair hart de sant en een 4 van de gemelde koolas en dat wel onder een sak kalk menght een alve sak tras voor sterken tras.

Ik heb met veel oplettentheyd nagesien de 2 overgebleeven thooms van de geweese voorpoort, die gestaan heeft voor ’t vernietight en gedemoljeert casteel Sandenburgh, die gebout sijn ontrent den jaare 1300. Deese twee thooms of rondeelen sijn rondt ontrent 14 a 15 voeten over hun diameeter, gebout van buyten met 4 laagen Zeeuwse moppen en dan telkens een witte arduyne specklaag soo tot booven opgaande. Al de gebakken steenen sijn gewerkt Vlaams verbandt, de petitse koppen alle verglaast. De sterkste steenen harde uytgesoghde Zeeuwse moppen, soodat heeden nu aan de steenen nog niets en komt te manqueren, alsof et maar een maand of jaar gemaakt waar. Maar tot groote verwondering is te sien dat aan dat werk nog geen een voeg komt te manqueren nog stootvoegen, nog platte streekse voegen.

Aldaar staat nog ter suyden af een steene reduit, die meede gemaakt is ontrend dien tijd van Hollandsche drielingen en nu dient voor een bakkeet. Daar mankeert meede geen voeg aan. Dees kalkvoegen heb ik alleen [=allen] nagesien en seer nauwkeurig getoest en ik du[n]k onder corectie, dat die werken sijn gemaakt met schelpkalk die alhier in Zeeland gebrandt is en gestookt is met Zeeuwse daring. Want ’t coleur is van binnen aan de kalkvoegen wat [schraalder en] blauwer als heeden de opgedroogde [vriese] schelpkalk valt die verwerkt is nadat men in Zeelandt niet meer dering heeft moogen slaan, soodat het meijn toscheijnt, dat die blauwagtige couleur is ontstaen uyt den siltigen dering daar de kalk meede gebrandt sijn, want dat op die teijden seer veel zeeschelpen op deze Zeeuwsche stranden sijn te bekoomen geweest buyten nu, kan met veel reeden genoeg beweesen werden.

De stadsherberg tot Veere, genaamt den Campveersen thoom, is met een en deselve soort van kalk gemaakt als die aan ’t geweese casteel Sandenburgh.

Agter het stadsworkhuys te Veere staat nog een stuk van de oude stadsringmuur, gebout ontrent het jaar 1270 of daaronrent, meede gemaakt is met de selve soort van kalk als de twee voorgemelde werken. Is waarheyd. De steen aan die muer door inwaatering vriest wel los en aan stukken, maar de kalk niet. En dat het schelpkalk is, heb ik bevonden in ’t breekten; soo waaren van binnenin de voegen in de kalk stukies zeechelpen, want in de reparatie van deselve soo heb ik mijn werk daarvan gemaakt om te ondersoeken. Heeden nu nog sijn aan enige stootvoegen aan die muer opgewerkte stootvoegen aan welke opleght een fornis alsof het verglaast was. Wat voor een substantie dat het is, heb ik tot nu toe nog niet konnen ondtelken of nagaan.

[-] Dat de schelpkalk in oude teijden geput is geworden, soovel als men nog inde Oosternrijske provintien de steenkalk put, gelooft ik vast waar te sijn. In den jaare 1503 heeft Lodewijk van Mondfoort te Veere laaten bouwen aan de zee een thoon, die na sijn naam
genaamt werd, met een gaandierij daaraan, welke thoorn nu dient tot een gevangeplaas. Dat metselwerk is gemaakt met geputte Luykse kalk, want aan ‘t witte coleur is deselve genoeg te kennen en dat deselve is geput geweest, is genoeg te sien voor die kennis heeft van metselwerk. [] In steenkalk, die maar geblust is en niet geput is geweest, als deselve is gewerkt, sijn altijd ongeleste kleene kleonties en vooral en meest in de Luykse kalk. En die kooomen namaals te bussen in ‘t werk. En als namaals aan zulk werk gebrooken werd, soo ondeckt ‘t dan doordien daar pleeken sijn die onge- menght sijn met sand of tras; maar niet klaarder is te vinden dan als men binneneuren volraapt met steenkalk; aldaar soo een klompie komt te sitten, daar spront door ‘t blussen naarmaals een schelver van de plaastering af 1 a 1/2 d[uym], de sommige wel 2 duym overkruys in de ronte af van de mueren.

En dit gebouw is van buyten kraghtig uytgete- ten en van de zeelught en de son verteert en diverse maallen volgeset. Voorsooverre dit gebouw van ondere van de zee beloopen wert, is het voorwerk gemaakt ge- weest met witte arduyn; die steenen sijn van hun kalk wel een voet diep uytgetegeten geweest, edog daar is geen tras in gewerkt geweest.

Mijn is beregt dat over 24 a 25 jaaren in de Willemstaden gemaakt is een steene molen met Luykse kalk. En die is aan de zuydkant al eens de voegen volgeset; en nu 1750 vereyst suikls al weerderom gedaan.

De Niervaart, gemeendelijk gesegt de C[l]un- dert is een jaar daarna meede een dito steene molen gemaakt met schelpkalk en daar manqueert heeden nog geen voeg aan.

In ‘t jaar 1736 is tot Veere gemaakt een steene botterklomp, dat is een bedorve molen sonder gaan- derij met Luykse steenkalk en van nu af aan is de zuyd- kant al noodig om te voegen vol geset te werden.

Derhalve soo kooomen mijn gedaghten met de voornoemde attestatie en gemelde oude werken seer wel overeen.

Alle oude gebouwen sijn in Holland en Zee- land en Vrieslandt gemaakt met schelpkalk en daar geen tras in gewerkt was. Die kalk was seer goet so quam te Middelburgh veel Engelse steenkalk, die daar gebragt wierdt voor ballast. Die kalk was seer goet en goedekoop: men kon deselve koopen voor 8 a 9 schellingen per hoed, dat was met de onkosten per Middel[burgh]se sak om 4 stuwers. Maar na dien tijd soo hebben de Engelse manifestuerscheepen singel, dat sijn kleene straatkeyties voor ballast ingevoerd en vaeren daar weerderom meede weg als sij ballast noodig hebben.

De hedendaagse prijs van kalk, tras en sand.

Een sak schelpkalk tot 16 sakken in het hoet Middelburghse maat, kost £ $ - - 8

Kalkboek
Een dito sak gebluste Luykse steenkalk tot 16 sakken in ‘t hoet als boven [die van Luyk of Brussel komd], kost

: - 2 - 6

[1749 vald de kalk nog seer duur]

Een dito sak gebluste [kalk] die uyt Heenegouw komt a 16 sakken in ‘t hoet, kost

: - 2 - 6

Een sak gebluste kalk die van Doornick komt [over Gend] a 16 sakken in dito hoet, Kost

: - 2 - 2

Een sak ongebluste kalk die van Doornick komt a 15 sakken in ‘t kruys, kost nu

: - 5 - : :

Een sak tras van 8 spint in een Middelburghse sak kost

: - 8 - : :

Een voer wit duynsant

: - 5 - : :

Een gemeene mande sant

: - : - 2

Een dito groote mande

: - : - 3

Van Naamen komt witkalk in witte tralimandejes, dat zijn klompen als vuysten en die kosten per mandt

: - 6 - :

Uyt Vriesland komt feijne stofkalk om meede te witten en die is bequam om te gebruyken voor de plakkers om deselve te mengen met playster en kost per sak

: - 6 - :

Men wit ook veel met gesifte Dortse kalk en kost per spint 9 groten of per sak

: - 6 - :

De beste kalk om te witten is grauwe Luykse kalk, ongesift, en die in een tobbe geset met waater 14 dagen om te weyken en dan sooveel men noodig heeft door een teems gedaan, dat sal spierwit opdroogen en niet afgaan als ’t sal opgedroogt sijn, edog ’t wilt wel wat lacmoes daarin hebbe: dat verteert ’t grauw dat nog in de kalk is.

Alle mueren die vet sijn van kaars of lamprook sijn noodig eerst overgewit met gomwaater en dan met witkalk.
Figuur 55
(zie pagina 242)
Onder de meest gebruikelijke verbindingsmaterialen der steenen komt, in de eerste plaats, voor de kalk, welke BELIDOR, te regt, de ziel van het metselwerk noemt. Zij wordt aangetroffen in onderscheidene steenen, aardsoorten en schulpen, en daarna onderscheid in steenkalk, mergelkalk en schulpkalk, waaruit zij door branding getrokken wordt.\(^A\) De steenkalk wordt vervaardigd:

1°. Uit steenen, welke men onder de aarde, in uitgestrekte, lagen aantreft, en door middel van kruid van elkander laat springen;

2°. Of uit steenen, welke op de oppervlakte der aarde, op den bodem der rivieren of langs de stranden, zoo als, bij voorbeeld, langs de Oostzee, gevonden worden.

De mergelkalk wordt gebrand uit eene witte of grauwachtige aarde, bekend onder den naam van mergel, welke men zoo wel in bergachtige streken, als ook in lage weilanden aantreft, en uit kalk- en leemachtige bestanddeelen is zamengesteld, welke in dezelve in ongeleid evenredigheid wordt aangetroffen, en waardoor dezelve den naam van kalk- of leemmergel verkrijgt, naar mate er meer van het eene of andere bestanddeel in wordt gevonden.

De schulpkalk wordt uit schelpen, door de zee aan derzelver oevres opgeworpen, gebrand. De steenkalk is boven de mergelkalk te verkiezen, aan derzelver oevers opgeworpen, gebrand. De steen wordt gevonden.

De steenkalk wordt vervaardigd:

1°. Uit steenen, welke men onder de aarde, in uitgestrekte, lagen aantreft, en door middel van kruid van elkander laat springen;

2°. Of uit steenen, welke op de oppervlakte der aarde, op den bodem der rivieren of langs de stranden, zoo als, bij voorbeeld, langs de Oostzee, gevonden worden.

De mergelkalk wordt gebrand uit eene witte of grauwachtige aarde, bekend onder den naam van mergel, welke men zoo wel in bergachtige streken, als ook in lage weilanden aantreft, en uit kalk- en leemachtige bestanddeelen is zamengesteld, welke in dezelve in ongeleid evenredigheid wordt aangetroffen, en waardoor dezelve den naam van kalk- of leemmergel verkrijgt, naar mate er meer van het eene of andere bestanddeel in wordt gevonden.

De schulpkalk wordt uit schelpen, door de zee aan derzelver oevres opgeworpen, gebrand. De steenkalk is boven de mergelkalk te verkiezen, aan derzelver oevers opgeworpen, gebrand. De steen wordt gevonden.

Om te onderzoeken, of eenige steen of aardsoort, of eenige andere stoffe, kalk bevatt, en in hoe groote hoeveelheid deze stof in deelzelve wordt aangetroffen, kan bewerkstelligd worden, door dezelve in sterkwater of eenig ander sterk zuur op te lossen. Daartoe brengt men deze stof tot een poeder, en late hetzelve wegen, waarna men er driemaal zoo veel sterkwater opgiet, als de hoeveelheid van het te onderzoeken poeder bedraagt. Is nu de stof van eenen kalkachtigen aard, zoo zal men bij deze bewerking eene hevige opbruising\(^B\) bemeren, waarmen men wel zorg moet dragen, dat het glas waarin men de proef verrigt, groot genoeg zij, daar anders van de stof verloren gaat.

Wanneer nu de opbruising ophoudt, en zich alleen in het glas eene heldere, doorschijnende, vloeistof vertoont, is zulks een bewijs, dat de te onderzoeken stof alleen uit kalkstof bestaat; maar bevindt men dat dezelve zeer troebel is, of op den bodem van het glas zich stoffen hebben neder gelaten, zoo is zulks een teeken, dat deze stof, behalve kalkaarde ook nog andere aardsoorten bevat. Ook kunnen deze nedergeklopte stoffen nog kalkstof inhouden, tot welker onderzoek men, na de heldere vloeistof er afgegoten te hebben, erweder op nieuw sterkwater opgiet; ontstaat er nu geene op bruising, dan is men verzekerd, dat deze stof geene kalkstof meer bevat.

Achtervolgens filtert men de eerst afgegrote vloeistof, benevens de tweede met de bezakte stoffen door ongelijmd drukpapier, of wit vloeipapier in een ander glas. De zuivere oplossing loopt nu in dit glas, en de vreemde stoffen blijven op ’t papier; om de oplossing volkomen te maken, zoo giet men op het glas, en de vreemde stoffen blijven op ’t papier; om de oplossing volkomen te maken, zoo giet men op het laatste gedisteeld water. Uit deze oplossing wordt nu

A GAUTHHEY beweert, in zijne Construction des Ponts, Chap. III, Sect. III, dat een kalksteen, voorondersteld wordende, alleen zuivere koolstofzuure kalk te bevatten, aan een voldoend sterk vuur blootgesteld zijnde, zich onttindt, het kristallisatiewater, en het koolstofzuur vervliegt, en de kalk zuiver overblijft, welke alsdan den naam van levendige kalk aaneemt. Dat, wanneer zij, in dezen staat, aan de vrije lucht wordt overgelaten, zij zich van zelve bluscht; dat is te zeggen, door in de dampkringslucht het water en het koolstofzuur, die zij verloren had, weder te hernemen, zoo tracht zij weder tot den staat van koolstofzuur over te gaan; maar door dadelijk hare eerste begeerte ontbindt, het kalkzuur. Daar van de mergelkalk, hier te lande, weinig of geen gebruik gemaakt wordt, zullen wij ons hoofdzakelijk met de beschouwing der beide andere soorten onledig houden.

B Deze regel is echter voor uitzonderingen vatbaar; bij de Gijpsteenen, bij voorbeeld, alhowel van eenen kalkachtigen aard, is de kalkstof zoodanig door het zwavelzuur verbonden, dat zij door de bijvoeging van het kalkstof tot het zwavelzuur groter is, dan tot het salpeterzuur.
Kalkboek

vervolgens de kalkaarde afgescheiden, door in dezelve eene oplossing van gezuiverd wijnsteenzout te laten droppelen, tot dat de vloeistof niet meer troebel is; daarnaroet men dezelve met een glazen staafje en filtert ze op nieuw. De kalkaarde blijft alsdan, in de gedaante van koolstofzure kalk, op ’t papier liggen: men laat deze vervolgens goed droogen en onderzoekt dezelve gewigt, waardoor men alsdan de hoeveelheid kan bepalen der in te onderzoeken steen of aarde zich bevindende kalkstof. De verdere ontbinding van de stoffen, welke zich, bij de eerste bewerking op den bodem van het glas hebben nedergelaten, behoort niet tot dit bestek.

De meeste schrijvers over de bouwkunde komen daar-in overeen, dat de hardste steensoorten, als bij voorbeeld, de marmers, de beste kalk opleveren. In de Zuidelijke Provincien wordt de Doorniksche steen voor een der beste soorten van kalksteen gehouden. De Namensche en Luiksche steen levert ook eene zeer goede kalk op.

De nieuwe Fransche Schrijvers onderscheiden de kalk in tweederlei soort, in vette en magere kalk.

Door vette kalk (chaux grasse) wordt verstaan de zoodanige welke vervaardigd wordt uit kalksteen, die alleen uit zuivere koolstofzure kalk bestaat, of waarin slechts 4 á 5 honderdste deelen klei of leemstof zich bevindt. Deze soort is wel geschikt voor werken, die niet aan de lucht zijn blootgesteld, maar deugt niet zoo goed als degene, welke, versch gebrand, daarentoe meer kiezelaarde bevat.

De gebrande kalksteenen van eene rozeroode kleur, die te kiezelende van ons land; zij wordt gebrandyzverzuursel (minie de fer blanche) toe te voegen, en bevonden, dat dezelve hierdoor voormelde eigenschap verkreeg.

De Doorniksche kalk behoort tot eene der beste zogenaamde magere kalksoorten van ons land; zij wordt gebruikt worden, is zij ook in de lucht aan de vette kalk gehouden. Door het branden verliezen de kalksteenen bijna de helft van hun ge-

Wanneer deze gebluscht is, in plaats van, door in den staat van eene zachte pap te blijven, die vervolgens tot pul-

De kalksteenen worden door middel van steenkolen tot kalk gebrand, en om den anderen, eene laag steenen, en eene laag steenkolen in dezelve gelegd. De gebrandyznatieen van eene rozeroode kleur, worden voor de beste gehouden. Door het branden verliezen de kalksteenen bijna de helft van hun ge-

Men moet alzoo in acht nemen, wanneer de kalk uit verre streken wordt aangevoerd, iets meer voor het bouwen te rekenen, dewijl die van verren afstand niet zoo goed is als degene, welke, versch gebrand, da-

250
Het branden der steenen brengt niet minder dan de aard der kalksteen en, veel tot de deugd der kalk toe. De kalk, die niet goed doorbrand is, bevat nog een hard lichaam, hetwelk tot geen kalk is overgegaan, en kan alzoo bij de lessching niet ontbonden worden, het zetten dezer ongebrande kluitjes doet een groot deel der kalk verloren gaan, terwijl het inblijven derzelve de kalk lastig of onbekwaam maakt. Niet minder slecht is de kalk, welker steenen al te gaar gebrand zijn, zoo dat ze na de branding en zonder gelescht te zijn, niet meer in kluiten bestaat, maar tot meel of poeder vervalt. Deze kalk, die bij de blusching weinig warmte verkrijgt, bij de menging weinig uitdijt, weinig zand kan verdragen en vervolgens traag in het versteenen is, is bijna geheel zonder kracht, en verteert schielijk tot stof.

Voor de beste steenkalk, derhalve, moet men die houden, welke juist van pas gebrand is, die niet vele keitjes, of ondoorbrande steenen in zich bevat, en ook niet ligt tot poeder overgaat, maar welke kalkbonken, met eene tamelijke kracht beslagen zijnde, in kleiner stukken breken, en een eenigszins helder geluid van zich geven.

Men schrijft het kwalijk branden der steenen daaraan toe, dat het vuur, voor het einde der branding, tusschen beide een weinig verflauwt, en niet in zijne volle kracht gehouden, zoudat, al wordt er vervolgens sterker gestookt, de steenen niet behoorlijk tot kalk te brengen zijn, omdat, zoo als men voorondersteelt, de porien door het groote vuur gemaakt, bij de lessching van de groeven van Luiksche en Namensche kalksteen verliest bij het branden ongeveer de helft van deszelfs gewigt; de uitgebreidheid vermindert niet, wanneer het een harde steen is, maar de zachte vermindert bijna \(1/10\) gedeelte; deze valt ook eerder tot stof.

Men herkent de goede kalk daaraan, dat, wanneer men deelzelve met water aannemt, zij vetig en klevende is, en zich wel met het zand verbindt; de kalk uit harde steenen gebrand, is daaraan te onderscheiden, dat het uitwendige grijs, en van binnen wit is, en daarboven een’ zekeren klank van zich geeft; wanneer zij met genoeg gebakken is, heeft zij eene roosachtige kleur, en is veel zwaarder; te hard gebakken zijnde, is zij zwart en deugt niets.

De capaciteit der kalkovens is van 20 tot 25 cubieel.

De kalk uit de omstreken van Hoei versteent het best onder water.

Het branden der schelpkalk geschiedt bij ons met turf, mede in kegelvormige oven, welker vak al van verschillende grootte zijn, en ver boven de Duitsche kalkovens te verkieschen, daar deelzelve veel minder aan verkristting der brandstoffen onderhevig zijn.

“De kalkovens der Hollanders,” zegt zeker schrijver, “laten niets ter verbetering over te wenschen, dan te kunnen verhoeden, dat er door de boven opening meerhitte vervliegen; maar dat gebrek is niet ontbraken, dat de kalksteen van Metz, eene der beste soorten van magere kalk, en is zemengesteld, als volgt:

<table>
<thead>
<tr>
<th>Bestanddeel</th>
<th>Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalksteenoever</td>
<td>100,00</td>
</tr>
<tr>
<td>Kalkaarde</td>
<td>3,50</td>
</tr>
<tr>
<td>IJzerverzuursel</td>
<td>3,20</td>
</tr>
<tr>
<td>Water en verlies</td>
<td>3,30</td>
</tr>
</tbody>
</table>

De beste Luiksche kalk wordt gebrand uit eenen grijzen steen, getrokken uit de groeven van Hoy, Layoir, Abbeye, Modave en Payliz, welke mede bouwsteen opleveren; die van de groeven van Mallieu, Flanc en Chequier, tusschen Hoei en Luik, worden bij uitsluiting tot kalk gebruikt.
weg te nemen, zonder tevens het voordeelige, om steeds voort te varen, en boven aan te vullen, zich te ontzeggen."

Vele jaren heeft men getwist over de meerdere deugd der eene boven de andere kalk; beiden zijn, echter, met een goed gevolg gehezigd, blijskens de aloude gebouwen, die met dezelve gemelseld zijn geworden, en welke voor de deugd van beide pleiten. De steenkalk, in-tusschen, kan meerder zand verdragen, dan de schelpkalk, welker evenredigheid staat als 4 tot 3, en zou al-zoo, indien de prijs van beide gelijk staat, het voordeel te zijde der eerstgemelde doen overslaan. Vooral hij waterdigt werken, komt het ons voor, dat de steenkalk, om de vereischte digtheid aan het werk bij te zetten, verkieslijk is. Doch daar de schelpkalk ook zeer goed en gedudgezaam werk oplevert, en aan een groot aantal ingezetenen een bestaan verschaffen, verneemt wij derzelver gebruik, waar zij maar eenigszins gehezigd kan worden, niet te moeten afraden te meer, daar zij men zich met minder moeite van de steenkalk bewerken laat; komende het gebrek van liet doorslaan der voch- tigheid, hetwelk men aan deze kalk dikwijls wil bemerkt hebben, wellicht niet zoo zeer van de schelpkalk zelve, als wel daarvan, dat zij met te weinig tras, of te veel zand is vermengd geworden.

Het blussen der levendige kalk geschiedt, in de Zuido- delijke provincien, op de volgende wijze: men werpt de levendige kalksteenen op een' hoof, giet daarover eenige emmers water, en dekt dezelve achtervolgens met zand, om de hitte, die daarbij ontstaat, beter te behouden. Indien de kalk niet dadelijk verwerkt wordt, kuilt men dezelve in, en dekt haar, met zand, ten einde de gemeenschap met de lucht te beletten, hoe eerder het blussen na het branden geschieden kan, des te beter wordt de kalk in hare volle kracht bewaard, daar zij deze verliest, door lang aan de lucht blootgesteld te zijn.

In eenige streken der Noordelijke provincien bedient men zich, tot het blussen der schelpkalk, van eenen bluschbak, van zoodanige grootte, dat eenige scheeps kalk daarin kunnen liggen, de rand of zij-planken ongeveer 50 duim hoog zijnde. Deze bluschbak wordt eenigszins schuins tegen de kuil gelegd, om aan de kalk een' beteren afloop te kunnen geven, tot dit oogmerk bevindt zich wijders aan het uiteinde eene opening mit tralien voorzien, die naar goedvinden kan geopend en gesloten worden. In deze kuil, welke rond-om bemetseld is, laat men de kalk vervolgens eenigen tijd besterven.

Na het regenwater, is het rivier- en bronwater het beste geschikt tot het blussen der kalk, mogende hiertoe vooral geen onrein of moerassig water gehezigd wor- den.

Het komt, bij het behoorlijk blussen, er vooral op aan, om niet te weinig, maar ook niet te veel water te gebruiken, en dit ligt bij tusschenpozingen te doen, vooral niet te veel in eens. In het eerste geval wordt de kalk niet behoorlijk opgelost, en in het tweede wordt zij te veel verdund of, zoo als de werklieden zeggen, verdonken. Geblusschte kalk kan zeer lang in kuilen bewaard blijven, zonder dat zulks haar enige schade zal toebrengen, maar, integrandelijk, door het lange leggen in de vochtigheid, worden de deelen, die bij het blussen niet goed zijn opgelost, volkomen ge-bluscht. De ondervinding leert, dat, wanneer de kalk dadelijk gebruikt zal worden, men vele oplettensheid heeft, die derzelver blussen moet hebben, dat er geen deelen onopgelost blijven; hiervan kan men zich overtuigen, door er met een mes in te steken; ontmoet men daarbij harde steenen, zoo is zulks een bewijs, dat de kalk nog niet behoorlijk is gebluscht, ook als men dezelve er schoon uithaalt, is dit een blijk, dat er geen water ge- noeg bijgedaan is; daarentegen, wanneer de kalk aan het mes kleeft, zoo bewijst dit, dat deze vet is, en vocht genoeg tot blussen heeft bekomen. Indien voor de behoorlijke blussing alzoo de noodige zorg wordt gedragen, zoo is de verschgebluschte kalk, even zoo goed, als die, welke lang ingekuild geweest is. Sommige deskundigen willen selfs, dat de inkuiling, wanneer de kalk behoorlijk gebluscht is, niet alleen onnutig, maar zelfs schadelijk zou wezen, dewijl ze door weeking te sterk smelt, de deelen zich te vast aaneen hechten, en alzoo kluiten en korrels formeren, die dikwijls moeijelijk en somtijds nooit fijn te maken zijn, waaruit dan verscheidene nadeelige gevolgen voor de metselwerken voortspruiten. Sommige volgen nog eene andere wijze van blussen die af te raden is, hierin bestaande, om de kalksteenen in kleine stukken gebroken, door middel van eene mand, eerst in eene kuip met water te doen, en vervolgens op een' hoof, in eene ton of in een' bak verder te blussen.

Door het blussen der steenkalk, wordt niet alleen haar ligjehamelijke inhoud twee- à driemaal groo- ter, maar ook haar gewigt vermeerderd, bij sommige, in dezelfde evenredigheid. Zulks heeft geen plaats bij de mergelkalk, en bij de schelpkalk wordt de ligjehamelijke inhoud slechts weinig vergroot.

In de Noordelijke provincien wordt de kalk bij de hoed verkocht; de metselaars verkopen deze echter bij klei- ner maat, namelijk bij den zak of bij agehelen, bevat-

Kalkboek
De kalk, op zichzelven genomen, zonder vermenging met andere harde stoffen, geen behoorlijk verbindingsmateriaal zijnde, daar de ondervinding geleerd heeft, dat als dan bij derzelver opdroging, scheuren en bersten ontstaan, nadat de waterdeelen er uitgewasemd zijn, zoo is men genoodzaakt, tot voorkoming daarvan, dezelve met zand, tras, fijngestampte gebakken stenen, tegels of dakpannen etz. te vermengen.

De noodzakelijkheid tot vermenging der kalk met zand, of enige andere harde specie, zal door het volgende nog duidelijker worden. Indien de steenen een volmaakt vlakke oppervlakte hadden, zou men kunnen volstaan, met een zeer dunne voeg van enkel kalk, derzelve vereeniging daarr tot stellen; maar daar deze alle oneffene oppervlakten hebben, is men genoodzaakt, bij gebakken steenen, deze voegen wel eene halve duim dik te maken, en bij gebouwen steenen nog dikker, deze groote hoeveelheid van kalk, door de uitwaseming der waterdeelen, aan inkrimping en bersting onderhevig zijnde, zoo is men genoodzaakt, deze dikte te verminderen, door dezelve in zoo vele kleiner dikten te verdeelen, door tusschenmenging van zand of andere harde specie, waardoor dus ook de uitwerking der inkrimping benomen wordt, daar men de kalk, als het ware, in een oneindig aantal voegen, van eene zeer geringe dikte, heeft verdeeld, en alzoo niet alleen geen bersten te vreezen heeft, wanneer de vermenging beoordeeld is, maar ook zal deze geringe hoeveelheid kalk verschilt den eenen tijd zeer van den anderen.

Hieruit volgt, derhalve, dat tot een’ goedaard kalkmortel geen ander, dan grof, hard, en zuiver zand, met groote scherpe kanten, kan gebruikt worden.

Het quartzzand, als het grofste en scherpste, is het beste van al deze soorten, tot den mortel geschikt, het zeezand, hoewel ook van deze soort, is echter minder doelmatig:

1°. Daar, door de gedurige beweging der golven, deszelfs scherpe kanten zijn afgesleten, en in gladdel, kegelvormige, brokken zijn herschaald;
2°. Dewijl het zeezand dikkerde met schelpzand is vermengd, hetwelk, van eenen kalkachtigen, en verbrekelijken aard zijnde, niet aan het oogmerk, zou voldoen;
3°. Daar het zeezand altijd zoute deelen in zich bevat, en deze steeds de vochtigheid aan trekken, de muren, in gewonen kalkmortel, belet uit te droogen, en bovendien een eene vreemde stof is, die de verbinding tussen kalk en zand eenigermate verhindert.

Het zand, hetwelk uit den grond gegraven, en in banken van verschillende dikte aangetroffen wordt, wanneer het niet te veel met klei of andere deden vermengd is, wordt voor het beste geacht. Het zuiver riervzand, wordt algemeen voor zeer goed gehouden, daarop volgt het witte duinzand. Het gravinzelzand, hetwelk daartoe somwijlen ook gebruikt wordt, is minder geschikt. Om zich te overtuigen, of het zand ook met vreemde stoffen vermengd is, werpe men hetzelfde in een glas met water, en bemerkt men, na het wel geschud te hebben, of het water troebel is, zoo levert dit een bewijs op, dat het zand met vreemde deelen vermengd is.
mengd is; blijft het water helder, alsdan blijkt hieruit, dat het zand zuiver is, de hardheid van korrel kan men het best op het gevoel onderzoeken.

Sommige metselaars zullen ook een onder-scheid maken, of de mortel tot metselen, dan wel tot het bepleisteren van muren moet dienen; in welk laat-ste geval, zij eene fijneere soort van zand verkiezen, om eene gladdere oppervlakte te kunnen verkrijgen.

Even als tot het blussen der levendige kalk, is het re-genwater het beste, tot het beslaan van den kalkmortel, en na helzelve het rivier- en bronwater, doch geen zee-water,1 hetwelk vochtige muren veroorzaakt en aanleding tot salpetering geeft.

Sommige schrijvers hebben gemeend, dat de ouden zich, van andere vloeistoffen bedienden, tot het vermengen van hunnen kalkmortel, als wijn, melk, olie enz.; de proeven, die hiermede genomen zijn, hebben echter bewezen, dat deze stoffen meer hinderlijk, dan bevorderlijk zijn tot de verbinding van den mortel.

Hoewel de kalk, als het ware, moet dienen, om de zandkorrels aan elkander te verbinden, ten einde een vast ligehaam daar te stellen, dus eigenlijk niet meerder kalk behoeft gebruikt te worden, dan tot invulling van de ruimten, welke tusschen de zandkorrels gevonden worden, noodig is, en uit proeven gebleken is,8 dat, wanneer men op drie maten zand eene maat allerbeste, versch gebluschte steenkalk nam, en deze behoorlijk roerde, slechts drie maten mortel opleverde, een be-wis, dat de kalk volkomen de tusschenruimten der zandkorrels had gevuld, zoo heeft echter de ondervinding geleerd, dat, daar de eene kalksoort meer uitdijt dan de andere, alzoorn meer met vreemde of ongare deelen vermengd is, of wel, door het verre transport hare kracht verloten heeft; waarbij nog komt, dat men iets meerder moet rekenen voor het niet volkomen vermengen; deze evenredigheid in de praktijk te schraal bevonden wordende, zoo nemen men, volgens het prac-tisch gebruik in de Zuidelijke provincien, gewoonlijk, een deel kalk op een gelijk deel zand, somtijds ook wel 2 deelen kalk op 5 deelen zand. In de Noordelijke prov-incen is het meest gebruikelijk, bij steenkalk, op 3 deelen kalk 2 deelen zand te nemen, en bij schelpkalk 4 deelen kalk op 2 deelen zand.

Voor den dienst der fortification is, volgens de algemeene voorwaarden, voorgeschreven: bij steenkalk 1 deel kalk op 1 deel zand, en bij schelpkalk 3 deelen kalk op 2 deelen zand. Deze evenredigheden dienen echter eenige wijzingen te ondergaan, naar den aard van het metselwerk, waartoe de mortel gebezigd moet worden, en den aard der kalk, moetende bij vetige kalk wat meer zand, bij schrale minder gebezigd worden.

Een muur op een en moerassigen grond, heeft vetter mortel noodig, dan die, welke op eenen klei-grond staat, en een’ muur op een’ brakken en zwavelachtigen grond, meer dan die op een’ zolen grond.

Men kan ook het jaargetijde in aanmerking nemen; men neme in het voorjaar het beslag vetter, of uit wat meer kalk bestaande, derwijl het den tijd heeft om te versteenen. In het najaar gebruikte men wat meer zand; om het droogen te bevorderen. Voor binnenmuren, op drooge gronden, gebruiken sommigen wel 1 deel kalk op 1 gelijk deel zand. Dit mengsel is echter wat schraal, vooral bij schelpkalk, en moet niet dan in zeldzame gevallen gebezigd worden, bij voorbeeld, voor binnenmuren, op tweede verdiepingen, die droog staan, en een steen dik zijn, geene bindten te dragen, noch persing te verduren hebben. Men zou echter beter doen, hiertoe te gebruiken 4 deelen kalk tegen 3 deelen zand.

Bij buitenmuren, die droog staan, en ten minste twee steenen dik zijn, gelijk mede bij muren, die tegen die van andere gebouwen rusten, zoodat er de regen niet tegen kan slaan, en welke gebouwen ruim en luchtig zijn, zoodanig, dat er eene bestendige doorspre-ling van lucht is, vermeenen sommige deskundigen, dat men volstaan kan, met een mengsel van 5 deelen schelpkalk en 3 deelen zand. De deugdzaamheid van den mortel hangt wijders veel van derzelver behoorlijke omwerking af, waarvoor geene zorg genoeg kan ge-dragen worden.

Vele auteurs hebben geschreven over de even-redigheid der bestanddeelen, tot den kalkmortel te gebruiken, zich op proeven beroepende, welke zij met dezelve genomen hebben, die allen naar den aard der stoffen verschilden, waarmede hunne proefnemingen hebben plaats gehad; men heeft zelfs het geheim der ouden trachten te ontekennen, om een’ mortel te verkrijgen, van gelijke hardheid, als de ondervinding leert, dat door hen gemaakt werd; hetwelk waarschijnlijk alleen in de bijzondere zorg gelegen was, waartoe zij de daartoe vereischte stoffen bereidden.

De Fransche architect LORIOT vermeent dit geheim ontdekt te hebben, blijkens het door hem in 1775 uitgegeven werk, getiteld, Instruction sur la nouvelle methode de préparer le mortier, waarvan eene Hollandsche vertaling moet bestaan bij Haack en comp. te Leyden, en heeft een mortel uitgevonden, welke wel zeer spoedig versteent, en zelfs ook bij waterwerken kan gebruikt wor-den, daar dezelve in het water zeer hard blijft, maar derzelver zamenstelling vereischt eene zorg en oplet-tenheid, die moeilijck in de praktijk ten uitvoer te
brengen is, en dus ook; waarschijnlijk hierdoor in onbruik is geraakt. Derzelver wijze van zamenstelling is de navolgende: men neme eene zekere maat fijngestampte tegels of doorbakken steen, welke wel doorzeefd moeten worden, twee maten zuiver rivier- of ander zand, gemengd met eene behoorlijke hoeveelheid oud gebluschte kalk, en die aldus, als een mortel van gewone dikte, in eene groeve worden bewaard. Daarna voege men bij dit mengsel eene hoeveelheid versch gebrande en fijngestampte levendige kalk, gelijk als van het tegelpoeder, en wanneer deze niet verkomen versch is, neme men daartoe eene grootere hoeveelheid. Op de regte verhouding der levendige kalk komt alles aan: want neemt men meer dan de in de gebluschte kalk zich bevindende vochtigheid kan verzadigen, zoo zal er geen volkome vereeniging van het mengsel ontstaan, en de mortel zal brokkelen. Neemt men minder, dan kan de mortel voor het oog van de arbeiders zeer ongezond werk zijn voor den, gebezigd. Daar de vervoer van de mortelen, gebezigd. Daar de vervoer van de mortelen, gebezigd. Maar, daarentegen, meer van deze gebreken te verhelpen, en wel op de volgende wijze. Deze redenen hebben den Heer MORVEAU beroemd scheikundige te Dijon, doen bedacht wezen, om, indien het mogelijk ware, een middel te vinden, deze gebreken te verhelpen, en wel op de volgende eenvoudige wijze. Hij had, namelijk, bemerkt, dat men een levendig kalkpoeder kon verkrijgen zonder voorafgegaande levendige kalk, soo versch uit de groeven wordt, waarin de overvloed der niet opgesloten wordende levendige kalk naderhand afgescheiden wordt, waardoor scheuren en berken moeten ontstaan.

Dat deze wijze van zamenstelling van den mortel in de praktijk zeer moeilijk is, zal een ieder ligtelijk begrijpen, daar alles afhangt van de juiste hoeveelheid toe te voegen levendige kalkpoeder, welke vast te bepalen onmogelijk is, daar dezelve moet afhangen van derzelver meerdere of mindere verschijning en het stijfslapen der levendige kalk een zeer ongevormd werk is voor de arbeiders. Deze redenen hebben den Heer MORVEAU beroemd scheikundige te Dijon, doen bedacht wezen, om, indien het mogelijk ware, een middel te vinden, deze gebreken te verhelpen, en wel op de volgende eenvoudige wijze. Hij had, namelijk, bemerkt, dat men een levendig kalkpoeder kon verkrijgen zonder voorafgegaande levendige kalk, soo versch uit de groeven wordt, waarin de overvloed der niet opgesloten wordende levendige kalk naderhand afgescheiden wordt, waardoor scheuren en berken moeten ontstaan.

De eerstgenoemde soort, de Pozzolaanaarde, welke gevonden wordt in Italië en de omstreken van Pozzoli, Bayas en Cuma, aan den voet van den Vesuvius, is, zoo als hieruit ligt opgemaakt kan worden, met lava-stoffen gemengd, en door onderaardse vuren gebrand. De Romeinen gebruikten reeds deze aarde tot het formeren van hunne cementen, voor waterdichte werken, en nog tegenwoordig wordt dezelve in Italië en Frankrijk, als de beste cementstof, tot dergelijke werken te gebruiken, vooral voor diegene, welke onmiddellijk aan den aanval der golven en sterke stroomen zijn blootgesteld, en die dadelijk moeten verharder worden. Daar de vervoer van de Pozzolaanaarde, naar deze landen, op te hooge onkosten zou loopen, zoo wordt van dezelve, in ons Rijk, geen gebruik gemaakt, maar, daarentegen, meer van de Andernachtsche tras, in de praktijk meest bekend onder den naam van Dordtsche tras, dezelve wordt gemalen van eene soort van tuisten, welke men in de omstreken van Keulen en Andernach vindt, en wel voornamelijk

Aanhangsel

hoewel men dikwijls in de praktijk aan deze stoffen zelven eigenlijk dezen naam geeft. Cementen zijn meest van eenen vulkanischen aard, hetzij dat zij natuurlijke of kunstmatige branding ondergaan hebben. De meest gebruikelijke zijn: de Pozzolaanaarde, de Andernachtsche tras, de Amsterdamse kunstcement, en de door de niersche asch.

Door cement verstaat men de vermenging van kalk met zoodanige stoffen, die aan dezelve de eigenschap geven, om onder water te verharden of te versteenen, alhoewel men dikwijls in de praktijk aan deze stoffen zelve oneigenlijk dezen naam geeft. Cementen zijn meest van eenen vulkanischen aard, hetzij dat zij natuurlijke of kunstmatige branding ondergaan hebben. De meest gebruikelijke zijn: de Pozzolaanaarde, de Andernachtsche tras, de Amsterdamse kunstcement, en de Door niersche asch.

De eerstgenoemde soort, de Pozzolaanaarde, welke gevonden wordt in Italië en de omstreken van Pozzoli, Bayas en Cuma, aan den voet van den Vesuvius, is, zoo als hieruit ligt opgemaakt kan worden, met lava-stoffen gemengd, en door onderaardse vuren gebrand. De Romeinen gebruikten reeds deze aarde tot het formeren van hunne cementen, voor waterdichte werken, en nog tegenwoordig wordt dezelve in Italië en Frankrijk, als de beste cementstof, tot dergelijke werken te gebruiken, vooral voor diegene, welke onmiddellijk aan den aanval der golven en sterke stroomen zijn blootgesteld, en die dadelijk moeten verharden, begezijn. Daar de vervoer van de Pozzolaanaarde, naar deze landen, op te hooge onkosten zou loopen, zoo wordt van dezelve, in ons Rijk, geen gebruik gemaakt, maar, daarentegen, meer van de Andernachtsche tras, in de praktijk meest bekend onder den naam van Dordtsche tras, dezelve wordt gemalen van eene soort van tuisten, welke men in de omstreken van Keulen en Andernach vindt, en wel voornamelijk

3°. De Andernachtsche tras, in de praktijk meest bekend onder den naam van Dordtsche tras, dezelve wordt gemalen van eene soort van tuisten, welke men in de omstreken van Keulen en Andernach vindt, en wel voornamelijk

J Smeaton vermeent, dat in de zamenstelling der cementen zout- of zeewater dezelfde uitwerkingen doet, en zoo er een verschil bestaat, zulks ten voordeele van het laatste zou wezen. Belidor zegt, in zijne Science des Ingenieurs, bladz. 208, dat men op enige plaatsen, met goed gevolg, zeewater tot den mortel gebruikt heeft, maar dat weder in enige andere provincien, de mortel niet, dan met veel moeite, droog te krijgen is; dat zulks hem doet gelooven, dat, wanneer de kalk zeer sterk is, men zich van zeewater kan bedienen, maar wanneer zij van eene slechte hoedanigheid is, de kalk nog meer verzwakt wordt.

bij het dorpje Brühl en het Lachermoor, welk dorpje op eene hoogte gelegen is, en waarschijnlijk de krater is van eenigen, in vroeger eeuwen bestaan hebbenden, vuurspuwenden berg,4 en derhalve niet anders dan een vulkanische stoof is. Zij is van eene graauwe kleur, en wordt in stukken van verschillende grootte, zacht en hard en van eenen poreusen aard, zoodat zij veel naar puimsteen gelijkt, naar Dordrecht afgevoerd, en aldaar door windmolens fijngemalen, waardoor zij hier te lande den naam van Dordsche tras heeft verkregen.

3°. De Amsterdamse kunstcement is een rooddichtige poeder, geformeerd van den modder, uit het Y gebaggert, meest genaamd beklonken zuivere molenklei, welke gebakken en daarna fijngemalen wordt.

De Heer DE BOOYS, te Amsterdam, was de eerste, die op het denkbeeld kwam om te beproeven, of het niet mogelijk zou zijn, eene stof te vinden, welke dezelfde uitwerking deed als de Italiaansche Pozzolaanaarde, en de Andermachts tras, weldaartjes op dit denkbeeld gebragt door het hier voren vermelde werk van den Heer LORIOT, in 1775 te Parijs uitgegeven, waarin deze, tot vervanging der kostbare pozzolaanaarde, het gebruik van fijnemalen, gebakken tegelsteenen, dakpannen, of van gebakken leem of onbeteelde aarde voor- en daarna fijngemalen wordt.

Ingevolge het verslag van het Koninklijk Nederlandsch Instituut, wordt dezelve genoemd eene zeer geschikte stof tot het maken van waterdigtige werken, welke echter in de eerste weken niet zoo spoedig tot versteening overgaat, als de Dordsche tras, doch welch verschil op de dertiende week geheel is weggenomen.

4°. De Doornikse asch (cendrée de Tournay) is de steenkolenasch, welke uit de ovens, waarin de Doornikse kalk gebrand wordt, getrokken wordt, en vermengd is met kleine stukjes gebakken stukken, welke zijn fijngemalen en dan fijn gestampt moeten worden.

In de Zuidelijke provincien wordt deze stof tot waterdigtige werken met goed gevolg gebezigd, BELDOR zegt van dezelve: „De ondervinding geleerd hebende, dat de harde steenen altijd eene goede kalk opleveren, en eenen uitmuntenden mortel voor de waterwerken, wanneer zij gemengd is met het pulver van de kolen of ijzersintels, welke men uit de smederijen bekomt, zoo als ik zulks in het IV Kap. uitgelegd heb, zoo is het niet te verwonderen, dat de Doornikse asch uitmuntend is voor hetzelfde gebruik, dewiyl zij te gelijker tijd de hoedanigheid dezijner beide stoffen vereenigt.

Zij wordt alleen gebezigd zonder bijvoeging van kalk, dewiyl zij reeds in eene voldoende hoeveel-

heid met deze stof vermengd is, doch moet met een' stamper, van onder met ijzer beslagen, fijn gestampt worden. Wanneer men dezelve niet dadelijk kan gebruiken, moet zij wel voor de lucht gedekt worden, en kan altds verscheidene maanden bewaard worden, zonder derzelver hoedanigheid te verliezen. De scheikundige ontleiding dezer cementstoffen heeft doen zien, dat zij allen uit dezelfde zelfstandigheden bestaan, doch in verschillende evenredigheden daarvan zijn zamengesteld; dat, evenals het aanwezen der ijzerverzuursels en kiezelaarde, in de magere kalksoorten aan dezelve de eigenschap geeft, om onder water te verharden, de bovengemelde cementstoffen daaraan insgelijks eigenschap te danken hebben, en de aluinaarde alleen, welke daarin aangetroffen wordt, als een ontledend bestanddeel, de bovengenoemde eigenschap aaltereert. Uit deze scheikundige ontleiding blijkt, betrekkelijk de tras en kunstcement, dat de eerste een gelijk aantal deelen kiezelaarde met de laatste heeft; doch acht deelen meerder aluinaarde of ontbindende deelen, daarentegen, een kalkdeel meer heeft, maar slechts de helft van het aantal deelen ijzerverzuursel, welke in de laatste gevonden wordt; welke ontleiding alzoo merklijk ten voordeele der kunstcement pleit, als hebbende meerder verhardende en minder ontbindende bestanddeelen, dan de Dordsche tras. Wijders, dat de Doornikische asch, van al de opgenoemde cementstoffen, de minste hoeveelheid ijzerverzuursel en kiezelaarde en de meeste hoeveelheid aluinaarde bevat. Daartoek kan ook wel mede werken, dat men, om de kalk niet te verbranden, de ovens niet te sterk mag aanstoken. GAUTHEY raadt voorzichtigheid in derzelve gebruik aan, om de groote hoeveelheid aluinaarde, welke daarin gevonden wordt.

De ontleiding van voornoemde stoffen heeft wijders de bedenking doen ontstaan, of met de stoffen van eene overeenkomende zamenstelling, tot denzelfden graad van doorbakkenheid gebracht, daarentegen een kalkdeel meer heeft, maar slechts de laatste gevonden wordt; welke ontleding alzoo merklijk in de tras en kunstcement pleit, als hebbende meerder verhardende en minder ontbindende bestanddeelen, dan de Dordsche tras. Wijders, dat de Doornikische asch, van al de opgenoemde cementstoffen, de minste hoeveelheid ijzerverzuursel en kiezelaarde en de meeste hoeveelheid aluinaarde bevat. Daartoek kan ook wel mede werken, dat men, om de kalk niet te verbranden, de ovens niet te sterk mag aanstoken. GAUTHEY raadt voorzichtigheid in derzelve gebruik aan, om de groote hoeveelheid aluinaarde, welke daarin gevonden wordt.

De ontleiding van voornoemde stoffen heeft wijders de bedenking doen ontstaan, of met de stoffen van eene overeenkomende zamenstelling, tot denzelfden graad van doorbakkenheid gebracht, daarentegen een kalkdeel meer heeft, maar slechts de laatste gevonden wordt; welke ontleding alzoo merklijk in derzelve gebruik aan, om de groote hoeveelheid aluinaarde, welke daarin gevonden wordt.

Eenige Fransche en andere bouwkundigen, in aanmerking nemende de groote kosten der pozzolaanaarde, als, onder anderen, LORIOT, hebben voorgedragen, tot hetzelfde einde gepulveriseerde gebakken stukken, tegels en dakpannen te gebruiken, welke ook een' grooter graad van doorbakkenheid heeft bekomen, zoodat men somwijlen eene slechte cementstof goed kan maken, door dezelve aan eene tweede bakking te
onderwerpen. De Zweedsche Ingenieur BAGGÉ, van Gothenburg, heeft daartoe een' schilfersteen gebruikt, welke hij tweemaal liet doorbakken, en daarna pulveriseerde. GUYTON DE MORVAUX heeft gevonden, dat de basalt van den uitgebluschten vuurspuwenden berg van DREVIN, in het departement der SAONE en LOIRE, na gebrand en gepulveriseerd te zijn, insgelijks een cement opleverde, welke met de pozzolaanaarde gelijk stond. De proeven met den schilfersteen van CHERBourg, ook de basalten uit het departement der Basse Loire, in Frankrijk, hebben insgelijks schoone resultaten opgeleverd.

De Heer CHAPTAL heeft voorgedragen, tot hetzelfde einde, de in het zuiden van Frankrijk, zoo menigvuldig, aangetroffene oker-aardstoffen te gebruiken, welke na eene behoorlijke branding, insgelijks een uitmuntend cement hebben opgeleverd.\footnote{De ontbinding dezer aardsoorten hebben de volgende resultaten gegeven:}

<table>
<thead>
<tr>
<th>Aluinaarde</th>
<th>Kiezelaarde</th>
<th>Kalk</th>
<th>IJzerverzuursel</th>
</tr>
</thead>
<tbody>
<tr>
<td>257</td>
<td>40</td>
<td>116</td>
<td>10</td>
</tr>
</tbody>
</table>

De proeven met den schilfersteen van Gothenburg, heeft daartoe een' schilfersteen gebruikt, welke hij tweemaal liet doorbakken, en daarna pulv

De Heer CHAPTAL heeft voorgedragen, tot hetzelfde einde, de in het zuiden van Frankrijk, zoo menigvuldig, aangetroffene oker-aardstoffen te gebruiken, welke na eene behoorlijke branding, insgelijks een uitmuntend cement hebben opgeleverd.

<table>
<thead>
<tr>
<th>Pozzolaanaarde</th>
<th>Kiezelaarde</th>
<th>Kalk</th>
<th>IJzerverzuursel</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>35</td>
<td>5,0</td>
<td>20,0</td>
</tr>
</tbody>
</table>

De Heer CHAPTAL heeft voorgedragen, tot hetzelfde einde, de in het zuiden van Frankrijk, zoo menigvuldig, aangetroffene oker-aardstoffen te gebruiken, welke na eene behoorlijke branding, insgelijks een uitmuntend cement hebben opgeleverd.

De proeven met den schilfersteen van Gothenburg, heeft daartoe een' schilfersteen gebruikt, welke hij tweemaal liet doorbakken, en daarna pulv

De Heer CHAPTAL heeft voorgedragen, tot hetzelfde einde, de in het zuiden van Frankrijk, zoo menigvuldig, aangetroffene oker-aardstoffen te gebruiken, welke na eene behoorlijke branding, insgelijks een uitmuntend cement hebben opgeleverd.

<table>
<thead>
<tr>
<th>Tras</th>
<th>28</th>
<th>57</th>
<th>6,5</th>
<th>8,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kunstcement</td>
<td>20</td>
<td>57</td>
<td>5,5</td>
<td>17,5</td>
</tr>
<tr>
<td>Doorkniksche asch</td>
<td>30</td>
<td>44</td>
<td>7,5</td>
<td>8,5</td>
</tr>
</tbody>
</table>

De scheikundige ontleding van beide stoffen zou, zoo als wij gezien hebben, de balans ten voordede van het kunstcement doen overslaan, indien hetzelve altijd denzelfden graad van doorbakkenheid heeft, als de monsters, waarmede de proeven genomen zijn. Daar, blijkens de proeven, door het Instituut genomen, het kunstcement langer tijd tot versteening noodig heeft, als de tras, zou zou de laatste echter in die geval- len alleen verkieslijk zijn, waarbij het op eene onmiddellijke verharding van het metselwerk aankomt.

Men onderscheidt, in het practicaal gebruik, vierderlei soorten van cement of tras, naar de verschillende evenredigheid der zamenstellende deelen kalk, tras en zand; welk laatste bestanddeel alleen voor de zoogenaamde basterdsorten gebruikt wordt, als: sterke tras, sterke basterd tras, basterd tras en slappe basterd tras.

Volgens de algemene voorwaarden, indien daartoe steenkalk gebruikt wordt, met tras of kunstcement, om het even, neemt men voor sterke tras, zes deelen steen-

<table>
<thead>
<tr>
<th>Aluinaarde</th>
<th>Kiezelaarde</th>
<th>Kalk</th>
<th>IJzerverzuursel</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>57</td>
<td>5,5</td>
<td>17,5</td>
</tr>
</tbody>
</table>

De scheikundige ontleding van beide stoffen zou, zoo als wij gezien hebben, de balans ten voordede van het kunstcement doen overslaan, indien hetzelve altijd denzelfden graad van doorbakkenheid heeft, als de monsters, waarmede de proeven genomen zijn. Daar, blijkens de proeven, door het Instituut genomen, het kunstcement langer tijd tot versteening noodig heeft, als de tras, zou zou de laatste echter in die geval- len alleen verkieslijk zijn, waarbij het op eene onmiddellijke verharding van het metselwerk aankomt.

Men onderscheidt, in het practicaal gebruik, vierderlei soorten van cement of tras, naar de verschillende evenredigheid der zamenstellende deelen kalk, tras en zand; welk laatste bestanddeel alleen voor de zoogenaamde basterdsorten gebruikt wordt, als: sterke tras, sterke basterd tras, basterd tras en slappe basterd tras.

Volgens de algemene voorwaarden, indien daartoe steenkalk gebruikt wordt, met tras of kunstcement, om het even, neemt men voor sterke tras, zes deelen steen-

L In de Esprit des journeaux, de Février 1792, Tom. II, vindt men een mineralogisch onderzoek over den oorsprong en het nut van den Keulschen tufsteen, benevens duidelijke bewijzen van het bestaan van het Kunstcement.

M Volgens de Programmes des Cours de Construction de M. SGNZIN, heeft de ontbinding dezer cementstoffen de navolgende resultaten opgeleverd:

<table>
<thead>
<tr>
<th>Pozzolaanaarde</th>
<th>Kiezelaarde</th>
<th>Kalk</th>
<th>IJzerverzuursel</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>35</td>
<td>5,0</td>
<td>20,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tras</th>
<th>28</th>
<th>57</th>
<th>6,5</th>
<th>8,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kunstcement</td>
<td>20</td>
<td>57</td>
<td>5,5</td>
<td>17,5</td>
</tr>
<tr>
<td>Doorkniksche asch</td>
<td>30</td>
<td>44</td>
<td>7,5</td>
<td>8,5</td>
</tr>
</tbody>
</table>

N De scheikundige ontleding van beide stoffen zou, zoo als wij gezien hebben, de balans ten voordede van het kunstcement doen overslaan, indien hetzelve altijd denzelfden graad van doorbakkenheid heeft, als de monsters, waarmede de proeven genomen zijn. Daar, blijkens de proeven, door het Instituut genomen, het kunstcement langer tijd tot versteening noodig heeft, als de tras, zou zou de laatste echter in die geval- len alleen verkieslijk zijn, waarbij het op eene onmiddellijke verharding van het metselwerk aankomt.

Men onderscheidt, in het practicaal gebruik, vierderlei soorten van cement of tras, naar de verschillende evenredigheid der zamenstellende deelen kalk, tras en zand; welk laatste bestanddeel alleen voor de zoogenaamde basterdsorten gebruikt wordt, als: sterke tras, sterke basterd tras, basterd tras en slappe basterd tras.

Volgens de algemene voorwaarden, indien daartoe steenkalk gebruikt wordt, met tras of kunstcement, om het even, neemt men voor sterke tras, zes deelen steen-

O De schilfersteen van Haineville, door den Inspecteur GRATIEN, den vader, tot cement gebruikt, heeft de navolgende bestanddeelen opgeleverd:

<table>
<thead>
<tr>
<th>Aluinaarde</th>
<th>Kiezelaarde</th>
<th>Kalk</th>
<th>IJzerverzuursel</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>46</td>
<td>8</td>
<td>14</td>
</tr>
</tbody>
</table>

P De ontbinding dezer aardsoorten hebben de volgende resultaten gegeven:

<table>
<thead>
<tr>
<th>Aluinaarde</th>
<th>Kiezelaarde</th>
<th>Kalk</th>
<th>IJzerverzuursel</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>41</td>
<td>5</td>
<td>19</td>
</tr>
</tbody>
</table>

en komen, van alle opgenoemde stoffen, het naast aan de Pozzolaanaarde.
Kalkboek

kalk en vijf deelen tras; tot *sterke bastard tras*, zes deelen steenkalk, vier deelen tras en één deel zand; tot *bastard tras*, twee deelen steenkalk, één deel tras en één deel zand; tot *slappe bastard tras*, drie deelen steenkalk, één deel tras en twee deelen zand; en ingeval daartoe *schelpkalk* gebezigd wordt, neemt men tot de *sterke tras* twee deelen schelpkalk en één deel tras; tot *sterke bastard tras*, zes deelen schelpkalk, drie deelen tras en één deel zand, tot de *bastard tras*, vijf deelen schelpkalk, een en een half deel tras en een en een half deel zand, tot de *slappe bastard tras*, vijf deelen schelpkalk, één deel tras en twee deelen zand.

De tras zuigt het water niet in, maar keert hetzelve af; doch tegen eene drooie lucht, en vooral tegen de vorst, is deselve niet bestand; tot zulke muren, die vochtig en tevens aan de lucht blootstaan, gebruikt men de bastard tras. In dit mengsel, dient het zand tot de versterking, en de tras om de vochtigheid af te keeren. De bastard tras wordt alzoo gebezigd in buitenmuren, op het zuidwesten gelegen, voor trasramen van muren op vochtige gronden, voor kaaijen en rollagen, en soortgelijke werken. Men kan overigens in de opgegeven evenredigheid, voor de zamenstelling der bastende en mede zo vele manden kalk, als het beslag kalkdeelen, en mede zo vele manden zand, als het beslag zanddeelen moet bevatten. Vervolgens maakt men in het midden eene kuil, waarin men water doet; men steke de kalk met de schop rondom af, en verper die, in de kuil met water, zoo lang tot dat het water bedekt zij. Men moet vooral zorg dragen, bij dit beslag, niet te veel water te gelijk te gebruiken, omdat door den overvloed van water, de kalkdeeltjes, voornamelijk, wanneer zij niet door en door met het zand vermengd zijn, zich aan elkander zetten en korrels veroorzaken.

Wanneer men kalkmortel wil beslaan, neemt men zoo vele manden kalk, als het beslag kalkdeelen, en mede zoo vele manden zand, als het beslag zanddeelen moet bevatten. Vervolgens maakt men in het midden eene kuil, waarin men water doet; men steke de kalk met de schop rondom af, en verper die, in de kuil met water, zoo lang tot dat het water bedekt zij. Men moet vooral zorg dragen, bij dit beslag, niet te veel water te gelijk te gebruiken, omdat door den overvloed van water, de kalkdeeltjes, voornamelijk, wanneer zij niet door en door met het zand vermengd zijn, zich aan elkander zetten en korrels veroorzaken.

Wanneer dit mengsel vervolgens behoud of omgezet wordt, moet men er telkens, naar mate dat het water in de kalk trekt, er nieuw bijgieten, doch althans maar weinig te gelijk; gedurig bij elke gieting de kalk omvatten en doorbouwend, en met het platte van de schop kloppende of slaande, om de korrels weg te vegen, en mede zo vele manden zand, als het beslag zanddeelen moet bevatten. Vervolgens maakt men in het midden eene kuil, waarin men water doet; men steke de kalk met de schop rondom af, en verper die, in de kuil met water, zoo lang tot dat het water bedekt zij. Men moet vooral zorg dragen, bij dit beslag, niet te veel water te gelijk te gebruiken, omdat door den overvloed van water, de kalkdeeltjes, voornamelijk, wanneer zij niet door en door met het zand vermengd zijn, zich aan elkander zetten en korrels veroorzaken.

Om de kalk met de waterdeeltjes genoegzaam te doen doortrekken, late men de aldus beslagen hoop tot den volgenden dag leggen, in acht nemende, om, wanneer deze, bij gebrek van eene behoorlijke bergplaats, in de open lucht beslagen is, dezelve met eene rietmat te dekken, of dien met zand te bestrooijen. Achtervolgens moet deze kalkmortel den volgenden dag weder omgehaald, op nieuw doorbouwd en geveild worden, ten einde er de korrels uit te krijgen; wel zorg dragende, dat de mortel niet te stijf of te dun worde beslagen; in het eerste geval geeft deze lompe voegen, en eene moeilijke versteening, in het tweede geval loopt ze met het drukken der steenen te veel weg,
en veroorzaakt geene genoegzame verbindings. De kalk moet alzoo niet vloeibaar, maar als eene soort van lijm zijn, welke, naar dat de aard van den steen harder of zachtter is, ook iets stijver of dunner kan zijn, of naar dat het saizoen is; wanneer men, bij voorbeeld, in het najaar metselt, neme men de specie, ter behoeving van de vorst, iets drooger, hetwelk de metselaars droog metselen noemen. Men moet hiervan echter niet, dan in het voornoemde geval gebruik maken, daar hierbij geene volkomen vaste vereening wordt daargesteld. Het be- slaan der sterke tras geschiedt op dezelfde wijs, als voor den mortel beschreven is, doch daarbij in acht nemende, dat de kalk, zoo wel steen- als schelpkalk, eerst gezift moet worden, en wel zorg dragende, dat er geen zand, steentjes of ander vuil, onder gerake. Het best is, deze specie eenige dagen te laten rusten, alvo-rens dezelve te gebruiken, doch deze alle dagen wel te doorbouwen. In groote werken heeft men veelal de ge- woonte, dit zes dagen achter elkander te doen, alvorens van dezelve gebruik te maken.

De mengsels tot de basterd tras moeten, vol- gens de algemeene voorwaarden, zonder de bijvoeging der tras, gedurende drie dagen, dagelijks met kalkhaken of houwelen beslagen en afgewreven worden. De bij- voeging der tras, zal niet dan op den dag der verwer- king geschieden, wanneer de geheele, massa andermaal behandeld en herbouwd zal moeten worden. Indien er cement moet overblijven, zoo moet dezelve den vol- genden dag, zonder water, weder behoorlijk door- gewerkt worden, en verkrijgt alzoo zijne geschiktheid tot het metselen terug, doch nimmer zoo goed als de versche. Het is wijders noodzakelijk, de cementen in eene overdekte plaats te bewerken, om dezelve voor den re- gen en de zon te beveiligen. Walmeer men deze massa niettegenstaande derzelver deugd te koek, die terstond kan bewerkt, en ook eenige maan- den kan bewaard worden, zonder dezelve deugdt te verliezen, wanneer men slechts zorg draagt, om ze voor de zon en regen te bewaren. Walmeer men deze kalk gebruiuen wil, wordt ze door het stampen gedwee.

In de provincien van de beide Vlaanderen en Henegouwen, wordt de specie veel gebruikt tot water- digte werken, en tot het opvoegen, waartoe dezelve bij- zonder geschikt is.

Tot het opvoegen van schoone muren, in de Noorde- lijke provincien, gebruiken men gemeenlijk schelpkalk, met zand beslagen, zoo als de gebruikte metselspetie, doch wat stijver, en stijve basterd tras, zoo hoog als de trasmatten zichen, bijhier in acht nemende, de kalk al- vorens behoorlijk te ziften, omdat de korrels, die in de kalk gevonden worden, in het voegen zeer hinderlijk zijn, en veel tijd doen verspillen, om ze er uit te zoeken, of wanneer zij in de voegen blijven, zeer nadeelig zijn, omdat deze door vorst en vocht opzwellende, uit- springen en alzoo de voegen doen uitweren.

Na verloop van twee of drie dagen wordt de kalk zoo hard als steen; alsdan slaat men dezelve met een’ stamper zoo lang tot ze gedwee wordt, en met de voegijzers verbruikt kan worden; hetwelk telkens herhaald moet worden, wanneer ze te hard geworden is.

Ten einde wittere voegen te verkrijgen, ge- bruikt men veeltiids Luiksche of Maaskalk, en dikwijls de stof er van, die men van kalkverkoopers daartoe uit de magazijnen onttrekt; doch welk gebruik niet zeer aan te prijzen is, daar de voegen hiermede gemaakt, veel aan uitweren onderhevig zijn. Tot het volraken of volzetten der voegen van binnenmuren, neemt men den kalkmortel, tot eene stevige dikte gemengd, en bas- terd tras voor de trasmatten; en wanneer dit volraapsel gedroogd is, worden de muren gepleisterd of overstre-

Aanhangsel

259
ken, met gezifte of gegoten schelp- of steenkalk, alleen zonder zand met water beslagen. Om de witheid te bevorderen, doet men er somtijds ook wel wat fijn gezifte pleister onder. De steenkalk wordt door velen, voor bepleisteringen, boven de schelpkalk verkozen, als minder onderhevig aan het afspingen of afschilferen, vooral, wanneer de bepleisteringen geverfd of beschilderd moeten worden. Ook is deze kalk beter tot het witten van bepleisterde muren geschikt, als witter en vettiger zijnde.

De Gips, welke niet zoo zeer in dit Rijk, als in andere landen, waar dezelve in overvloed wordt aangetroffen, tot verbindingsmateriaal gebezigd wordt, brandt men uit gipssteen of albaststeen, en bestaat uit kalkaarde, welke met vitrioolzuur verzadigd is, en die door het branden aan dezelve niet ontnomen wordt.

De Gipssteenen zijn daardoor van de kalkstenen te onderkennen, dat zij meestedeels half doorschijnend, en aanmerkelijk weeker zijn dan de laatste, wanneer zij met sterkwater of eenig ander zuur in aanraking gebracht worden, ontstaat er geene opbreuwing, wanneer zij met sterkwater of eenig ander zuur in aanraking gebracht worden, ontstaat er geene opbreuwing, ten zijderzelver kalkdeelen met volkomen door het vitrioolzuur verzadigd zijn.

Bij het blusschen van den gebranden gipssteen, ontstaat ook geen rook of hitte, gelijk bij den vitrioolzuur verzadigd zijn, en de aan warmte vaagt, dit gebrek kan verhelpen, door den kalkmortel met ossenbloed te vermengen, en versch gebrande kalk daarin op te lossen. Bij muurwerken in leemsteenen is het leem het eenigste, doelmatig, en te gelijk minkostbaarste verbindingsmiddel; daar steenen en mortel hier gelijksoortig (bomagino) zijn, zoo geeft zulks ook het beste en spoedigste verband.

De klei is eene aardsoort, waarvan de aluinarte een hoofdbestanddeel uitmaakt, en waarvan de hoofdeigenschap is, in eenen vochtigen staat zijnde, geen' doortogt aan het water te geven; en in een' droogen staat zich te verharden, en, even als de kalk, in te krimpen en zamen te trekken.

In de waterbouwkunde wordt alzoo de klei, om het doorloopen van het water te beletten, veel gebruikt tot aanvulling achter zware muren, alsmede tot ondervulling van benedenvloeren van sluizen, tot het maken van kistdammen enz., en in de burgerlijke bouwkunde, tot aanvulling achter en onder de muren van kelders,8 regenbakken enz.

Op plaatsen, beurtingels aan droogte en vochtigheid blooggesteld, zou de klei, tot bevordering der waterdichtheid, niet aan te bevelen zijn, daar dezelve, in het eerste geval, aan inkrimping en bersting onderhevig zijnde, eindelijk doortogt aan het water zou verleenen; in zoodanig geval, dient men dezelve met zand te vermengen, of het leem daartoe te gebruiken. Sommige schrijvers vermeenen, zelfs dat het beter is, in dat geval, alleen zand te gebruiken, hetwelk gedurig toevalt, naar mate het water zich openingen zoekt te banen.
GILLY geeft de veranderingen, die de gijpssteen ondergaat, op, als volgt:

Een cubiek voet ongebrande gijpssteen weegt. $145 \frac{5}{108}$ lood,
Geef aan gebrande gips. $119 \frac{8}{108}$ «
De daarvan gegotene gijps bevat. $295 \frac{108}{108}$ cubiek voet.
Het gewigt der gegoten gijps. $262 \frac{8}{108}$ lood.

R MANGER, in zijne Economische bauwissenschaft, beweert, dat het voldoende zou wezen, om op plaatsen, welke dikwerf onderhevig zijn, om onder water te geraken, waterdige kelders te maken, door slechts de muren der kelders van rondom, ten minste één voet binnenwaarts, in plaats van met mortel, met enkel klei op te metselen, en zulks schuins of oplopend te maken, waarop achtereenvolgens, zoo hoog als het water moge stijgen, nog eene rustende laag van klei, van 6 à 8 duim hoog, komt te liggen. Hierdoor beweert MANGER, en ook MEINERT, in zijne landwirthschaftliche bauwissenschaft, dat men het water kan afhouden; en om wijders het indringen van onderen te beletten, slaat hij voor, derzelver grond, volgens een' hollen boog, uit te graven, daarop eene kleilaag, van 20 à 24 duim dik, wel aan te stampen, waarop alsdan een holle boog van klinkersteenen opgemetseld wordt, daarbij in acht nemende, dat, hoe dieper deze kleilaag en klinkerkboog in het midden gelegd wordt, des te sterker zij is. Op dusdanige eene minkostbare wijs, beweert MANGER, eenen volkomen waterdijgen kelder gemetseld te hebben, welke nauwelijks een vierde van een’ cementkelder kostte.
Kalkboek
3 Summary

This publication deals with the application of a special and separate group of masonry mortars and pointing mortars: lime based mortars. Although attention will be paid to historical construction practices, the principal subject dealt with is contemporary restoration practices. In that context, the question is not only what the role of these mortars is now, but rather what their role could be.

Nowadays, bricklaying and pointing is done mainly with mortar in which Portland cement is the principal or even the only binder. As a result, much of the knowledge on lime mortars has been lost. Since the end of the nineteenth century, lime mortars have been replaced more and more by cement mortars. There are several different reasons for this phenomenon. The most important reason may be that a cement mortar achieves its final strength much more rapidly. Construction practice had to adapt to an ever-greater need for buildings, such as houses, factories, schools and civil engineering constructions. This was mainly the result of population growth and industrialisation. A milestone in this process was the explosive growth of construction activities immediately after the Second World War, when the restoration of wartime damage and the alleviation of the substantial housing shortage had to be dealt with simultaneously. Building had rapidly become a necessity, and it could only be achieved with cement mortars. Moreover, that is still possible. Nevertheless, a rediscovery of lime mortars is presently taking place, especially for use in restoration and renovation. This development is based on the principle of compatibility; mortars used for restoration must be highly compatible with historical materials. Nowadays, in the daily practice of restoration, mortars are sometimes used that are incompatible or insufficiently compatible. This leads to less durable construction and can cause damage in the long term. In many cases, lime mortars are compatible with historical brickwork, or at least more compatible than the cement mortars used in new construction. The examples of historical lime mortar that are still in good condition today demonstrate that lime mortar, provided it has the proper composition and was applied competently, can be extremely durable. This publication deals with the application of lime mortars for bricklaying and pointing and was motivated in part by an appreciation of this material.

The recipe for lime mortar

In lime mortars, the binder is either air-hardening lime (calcium hydroxide, Ca(OH)₂) or hydraulic lime. Hydraulic lime consists partly of calcium hydroxide, and, in greater quantity, calcium silicate, which reacts with water and then hardens. Slaking quicklime with water produces calcium hydroxide. Quicklime (CaO) is obtained by burning limestone or seashells (the raw materials for lime) in limekilns. An important constituent of limestone and seashells is calcium carbonate (CaCO₃).

Mortar is obtained by mixing a binder with aggregates. Mortar is usually composed mainly of aggregates. In the case of mortar for bricklaying or pointing, this is usually sand. The binder adheres to aggregate and brick. Sometimes, additives are also used. The nature and relative amounts of all these constituents determine the hardening process and the properties during use and after setting. The constituents of lime mortars are discussed in Chapter 3 (Section 2: The raw materials for lime mortar). However, the properties of a mortar are not determined purely by the properties of its constituents, but also by their relative amounts. The choice of a mix design for mortar must be made on the basis of the specific application for which the mortar is intended. This is discussed in Chapter 3, Section 6: The constituents and their proportions. However, this publication is not a book of recipes! Putting together a mortar is work for specialists and must therefore be left in the hands of such mortar technologists. Contractors and pointers are specialists in practical application of mortar and they must seek their satisfaction there, not in making small changes in mortar mixes or adhering stubbornly to their own recipes. As has been demonstrated all too often in practice, the monuments may then be the victims.

Hardening

Following the discussion of the composition of mortar, attention is given in Section 7: The hardening of lime mortar to the hardening process.

The hardening of air-hardening lime mortars can be summarised in the lime cycle: the process from stone to stone. Pieces of limestone or seashells (calcium carbonate) are transformed into calcium oxide by burning. After slaking with water, this calcium oxide becomes calcium hydroxide. The use of such mortar again results in a petrified lime: by reacting with carbon dioxide from the air, calcium hydroxide is transformed into calcium carbonate and the cycle is complete.
Depending on the mineral composition of the raw material, lime that is made from limestone (lump lime) sometimes contains not only lime but also so-called hydraulic secondary constituents. They react with water and lime to form hardening gels. These gels are responsible for the primary hardening of the binder. If there is still free lime (calcium hydroxide) present in the mortar after this primary hardening, then the primary hardening is followed by hardening due to the reaction between calcium hydroxide and carbon dioxide (provided of course that air is not excluded from the construction, for example, because the construction is under water). The last reaction is thus the same as during the hardening of air-hardening lime. This lump lime may, therefore, be looked upon as a mixture of a hydraulic constituent and air-hardening lime. The first hardens relatively rapidly, even under water, while the second hardens relatively slowly and only if carbon dioxide from the air can reach the lime. The degree to which the two constituents are present determines whether the lime is strongly or weakly hydraulic.

In the absence of (sufficient) hydraulic constituents, pozzolanic components may be added to the lime mortar in order to increase its hydraulicity and final strength. Together with these pozzolanic components, lime can harden more or less in the same way as hydraulic lime. The pozzolanic components may be either ground natural materials, such as trass, or artificial products such as crushed roofing tiles or other weakly burned ceramic materials.

A long history

Chapter 2 looks back at the traditional use of lime mortars. The use of lime for making construction mortar has a long and rich history. This is reviewed in detail in Section 2: ‘The use of lime over the centuries’. Section 2 is preceded by a section on the other binding agents that were and are used for the manufacture of mortar. From ancient times to the recent past, construction with mortars based on, for example, loam or gypsum was also common. Outside Western Europe and especially in developing countries, a binding agent such as loam, which has been totally forgotten in our region, is still often used.

Research

Chapter 5 starts with a section on research. When we investigate historical lime mortars, we see that a great diversity of lime mortars was used in the past. The principal differences are in the proportions of binder and sand, the type of lime used (air-hardening lime or hydraulic lime), and the presence or absence of additives, for example in the form of trass. These differences can be explained, on the one hand, by the exploitation of local and regional sites for obtaining the raw materials (limestone, seashells). On the other hand, a role is played by the increase in technical expertise over time. Thanks to this increase in expertise, the composition of mortars could be increasingly fine-tuned to the circumstances in which and for which the mortar was used (rising brickwork, dams and dikes, etc.).

If we wish to use lime mortars in restoration or renovation work, we must have an understanding of the stone and the historical mortar to which we must connect. The weather, wind and other environmental influences are also important. Chapter 4 deals with environmental influences and provides an insight into weathering and degradation and the related properties such as durability. This Chapter constitutes an important basis for the last part of Chapter 5, which deals with the use and composition of lime mortars (Section 3.2) and discusses some examples from daily practice (Section 4).

State of the art

The intention of this book is to describe the state of the art. Based on their own expertise, from both old and recent publications and from the contributions from the working group, the authors have attempted to draw as complete a picture as possible of lime-bound mortars for pointing and bricklaying. The incentive behind this was not only the insight that equally good, if not better, mortars can often be made with lime as with the cement that is normally used. It also sprang from the important conviction that the conservation of monuments would benefit from the re-introduction of this material in the spectrum of products that are available for restoration work. If one gets to know the material better again, it will also be used more often.
4 Zusammenfassung

Diese Veröffentlichung umfasst die Anwendung einer besonderen, separaten Maurer- und Fugenmörtelgruppe: die Kalkmörtelsorten. Dabei wird einerseits die historische Bauweise behandelt, andererseits aber vor allem die heutige Vorgehensweise bei der Restaurierung. Im Zuge des Letzteren steht nicht nur die Frage im Mittelpunkt, welche Bedeutung diese Mörtelsorten jetzt haben, sondern vor allem, welche Bedeutung sie in der Zukunft haben könnten.

Rezept für Kalkmörtel

Abbildung

Stand der Technik

5 Résumé

Cette publication traite de la mise en œuvre de mortiers de maçonnerie et de jointoiement d’un type particulier et spécifique: les mortiers de chaux. Nous y évoquerons l’historique des techniques de construction mais nous nous pencherons surtout sur les techniques de restauration actuelles. Dans ce cas précis, la question qui se pose n’est pas tant de savoir ce que ces mortiers apportent actuellement mais plutôt ce qu’ils pourraient apporter.

À l’heure actuelle, le liant contenu dans les mortiers principalement utilisés pour la maçonnerie et le jointoiement est essentiellement ou uniquement le ciment Portland. De ce fait, une grande partie des connaissances relatives aux mortiers de chaux se sont perdues. Depuis la fin du dix-neuvième siècle, les mortiers liés au ciment ont remplacé petit à petit les ciments de chaux. Cela est dû à plusieurs raisons. La principale est peut-être qu’un mortier de ciment atteint sa résistance définitive beaucoup plus rapidement. La construction a été contrainte de s’adapter au besoin de plus en plus croissant en bâtiments tels que maisons, usines, écoles et ouvrages de génie civil. Ceci était surtout la conséquence de la croissance démographique et de l’industrialisation. Dans ce cadre, l’explosion de la construction de bâtiments qui a suivi directement la fin de la Seconde Guerre Mondiale, dans le but de reconstruire les dommages de la guerre et de répondre simultanément au grand besoin de logement, constitue une étape majeure. Construire rapidement était devenu une nécessité et les mortiers de ciment le permettaient. Et le permettent encore de nos jours. Néanmoins, on assiste actuellement à la redécouverte des mortiers liés à la chaux, notamment pour leur emploi dans le secteur de la restauration et de la rénovation. Cette utilisation repose sur le principe de la compatibilité: les mortiers de restauration doivent bien se combiner avec les matériaux historiques. Dans les travaux de restauration courants actuels, les mortiers employés sont souvent incompatibles ou insuffisamment compatibles. Cela aboutit à des ouvrages moins durables et peut, à terme, provoquer des dommages. Dans de nombreux cas, la compatibilité des mortiers de chaux avec les maçonneries historiques est meilleure que celle des mortiers de ciment destinés à la construction neuve. Les mortiers anciens, rencontrés sur des constructions historiques et demeurés en bon état de conservation, montrent que ce mortier — s’il possède la composition adéquate et s’il est mis en œuvre dans les règles de l’art — peut être extrêmement durable. Cette publication traite la mise en œuvre des mortiers liés à la chaux et des mortiers de jointoiement et a été également inspirée par l’admiration portée à ce matériau.

La recette du mortier de chaux

Le liant des mortiers de chaux est constitué par la chaux aérienne (hydroxyde de calcium, Ca(OH)₂) ou par la chaux hydraulique. La chaux hydraulique est constituée d’un mélange d’hydroxyde de calcium et d’une grande partie de silicate de calcium qui réagit au contact de l’eau en durcissant. L’hydroxyde de calcium est obtenu en éteignant d’eau la chaux anhydre. La chaux anhydre (CaO) s’obtient en calcinant (dans des fours à chaux) du calcaire ou des coquillages (les matières premières à la base de la chaux). Le calcaire et les coquillages sont constitués en grande partie de carbonate de calcium (CaCO₃).

Un mortier s’obtient en mélangant un liant avec un granulat. Le mortier est principalement constitué par le granulat (agrégat). Dans le cas d’un mortier de maçonnerie ou de jointoiement, il s’agit le plus souvent de sable. Le liant doit assurer la liaison entre les grains du granulat et la liaison entre les grains et la brique. Des additifs sont parfois ajoutés. La nature et les proportions de tous ces composants ont une influence déterminante sur le processus de durcissement et sur les propriétés lors de la mise en œuvre après le durcissement. Le chapitre 3 traite des composants des mortiers de chaux (§ 2: Les matières premières du mortier de chaux). Les propriétés du mortier ne sont pas uniquement établies par les propriétés des matières qui le composent mais aussi par les proportions du mélange. Le choix de la formulation du mortier doit être fait sur la base de la fonction spécifique à laquelle le mortier est destiné. Cet aspect est également abordé au chapitre 3, paragraphe 6: Les composants et leurs proportions. Par ailleurs: cette publication n’est pas un livre de recettes! La composition d’un mortier est un travail de spécialistes et doit donc être confiée uniquement aux technologues des liants et granulats. Les entrepreneurs et les jointoyeurs sont spécialisés dans la mise en œuvre et c’est là qu’ils doivent consacrer leurs efforts plutôt qu’inventer eux-mêmes les recettes de mortier ou persister de façon incompréhensible à utiliser leur propre recette. Comme nous le montre trop souvent la pratique, les monuments ne peuvent en être les victimes.

Durcissement

Après la composition du mortier, le processus de durcissement est le sujet du § 7: Le durcissement du mortier de chaux.

Le durcissement des mortiers de chaux peut être résumé par le cycle de la chaux: le processus de transformation de pierre à pierre. Des morceaux de
calcaire ou de coquillages (carbonate de calcium) sont transformés en oxyde de calcium par calcination. En arrosant avec de l’eau, l’oxyde de calcium réagit pour former de l’hydroxyde de calcium. Après transformation, il se forme alors de la chaux pétrifiée: en se combinant avec le dioxyde de carbone de l’air, l’hydroxyde de calcium est transformé en carbonate de calcium, après quoi le cycle est achevé.

La chaux fabriquée à partir de calcaire (chaux en roche) est parfois, selon la composition minéralogique de la matière première, constituée non seulement de chaux mais aussi d’éléments hydrauliques secondaires. Ceux-ci réagissent en présence de l’eau et du calcaire pour former des gels durcissants. Ces gels assurent le durcissement primaire du liant. S’il reste encore de la chaux libre (hydroxyde de calcium) dans le mortier après ce durcissement primaire, un second durcissement a lieu, dû à la réaction de l’hydroxyde de calcium avec le dioxyde de carbone (du moins, lorsque la construction n’est pas isolée de l’air, par exemple parce qu’elle a lieu sous l’eau). Cette dernière réaction correspond donc au durcissement de la chaux aérienne. On peut donc considérer la chaux en roche comme le mélange d’un composant hydraulique et de chaux aérienne. Le premier durcit relativement rapidement, même sous l’eau, le second relativement lentement et uniquement si le dioxyde de carbone contenu dans l’air peut entrer au contact de la chaux. La proportion de l’un et de l’autre composant détermine si la chaux est fortement ou peu hydraulique.

Une longue histoire

Le chapitre 2 est essentiellement une rétrospective de l’emploi traditionnel des mortiers de chaux. L’emploi de la chaux dans la composition des mortiers de construction connaît une histoire à la fois longue et riche. Elle est exposée en détail au § 2: L’emploi de la chaux au fil des siècles. À titre de préambule, un paragraphe évoque que les autres liants ayant été employés et employés à l’heure actuelle dans la composition des mortiers. Depuis l’Antiquité jusqu’à un passé récent, des mortiers à base de glaise ou de plâtre, par exemple, étaient aussi employés pour la construction. Hors de l’Europe occidentale, notamment dans les pays en voie de développement, un liant comme la glaise, ici totalement oublié, est aujourd’hui encore beaucoup utilisé.

Recherche

Le chapitre 5 commence par un paragraphe sur la recherche. Lorsque l’on étudie les mortiers de chaux historiques, il s’avère qu’une grande diversité de mortiers de chaux étaient mis en œuvre dans le passé. Les différences portent essentiellement sur la proportion entre liant et sable, le type de chaux utilisé (chaux aérienne ou chaux hydraulique) et la présence ou l’absence de composants secondaires, par exemple sous forme de trass. D’une part, ces différences peuvent s’expliquer par l’emploi de matières premières provenant de lieux d’extraction locaux et régionaux (calcaire, coquillages). D’autre part, l’évolution des connaissances techniques au fil du temps joue aussi un rôle. De ce fait, les compositions des mortiers pouvaient être de mieux en mieux adaptées aux circonstances de mise en œuvre et à la fonction que devait remplir le mortier (maçonnerie en élévation, ouvrage d’endiguement, etc.).

Si nous voulons employer les mortiers de chaux dans la restauration ou dans la rénovation, nous devrons acquérir une bonne notion de la pierre et du mortier historique auquel nous devons accorder. Les conditions atmosphériques et le vent ont également une importance, ainsi que d’autres influences environnementales. Le chapitre 4 se penche sur ces influences environnementales et détaille les notions d’altération et de dégradation et les caractéristiques qui y sont liées, comme la durabilité. Ce chapitre est une base importante pour la dernière partie du chapitre 5 qui est consacrée à l’emploi et à la composition des mortiers de chaux (§ 3.2) et évoque des exemples tirés de la pratique (§ 4).

État des lieux

Le présent ouvrage se propose de dresser un ‘état des lieux’ technique. Les auteurs – en faisant appel à leur propre expérience, en se basant sur des publications anciennes et récentes et grâce à la contribution du groupe de travail – ont tenté de brosser un tableau aussi complet que possible des mortiers liés à la chaux et destinés à la maçonnerie et au jointoïement. Ceci n’a pas uniquement été fait dans l’intention de démontrer que l’on peut fabriquer des mortiers avec de la chaux qui sont aussi bons – voire meilleurs – que les mortiers à base de ciment utilisés, les plus utilisés actuellement. Un argument de poids a aussi été la conviction que la conservation des monuments historiques bénéficierait de l’intégration plus large de ce matériau dans la gamme de produits disponibles pour la restauration. Si ce matériau était mieux connu, il serait également plus souvent mis en œuvre.
6 Geraadpleegde bronnen

Adam 1984

Adam 2003

Alberti s.a.
ALBERTI: De re aedificatoria, derde boek, hoofdstuk 14.

Alou 1989

Van Balen 1982

Van Balen 1999

Van Balen 2001

Van Balen 2003
K. VAN BALEN, I. PAPAYIANNI, R. VAN HEES & L. BINDA: Conservation Requirements, RILEM TC 167-Characterisation of Old Mortars. [nog niet uitgegeven; typoscript februari 2003].

Baronio 1991

D. BELL 1997

Bertoldi 1987

Binding 1978

Van Bommel 2001 I

Van Bommel 2001 II

Van Bommel 2001 III

Van Bommel 2002

Van Bommel 2003 I

Van Bommel 2003 II
A.J. VAN BOMMEL: De natuurlijke gevel. Praktijkboek Instandhouding Monumenten (nog niet gepubliceerd).
Kalkboek

Bommenée 1988

Bosch 1992
PETER W. BOSCH: De herkomstgebieden van de Maasgeselecten. Grondboor en Hamer 1992 3

Boynton 1966

Brade 1827

Brendle 2003

Broothaers 2002

Callebaut 1999

Callebaut 2000 I

Callebaut 2000 II

Callebaut 2000 III

Le Camus de Mézières 1972
NICOLAS LE CAMUS DE MEZIÈRES: Le guide de ceux qui veulent bâtir. tome 1 & II. Parijs, 1786 [Herdruk Genève [Minkoff], 1972].

Chantry 1979

Charter 1964

Chaux 1909

Choay s.a.
F. Choay: [ontuiggeven teksten bij de cursus aan het Center voor Conservation of Historic Towns and Buildings]. Leuven [Katholieke Universiteit Leuven], s.a.

Cliver 1974

Du Colombier 1953

Cracow 2000
Cracow Charter 2000: Principles for Conservation and Restoration of Built Heritage

Cuypers 1958
JEAN CUYPERS: De architectuur van de Sint-Kwintenskerk te Leuven. [Licentiaatsverhandeling Katholieke Universiteit Leuven, Faculteit Wijsbegeerte en Lettres, februari 1958].

Davey 1961 I

Davey 1961 II

Devillez 1869

Dijkstra 1980

Doom 1996

Dreyfus 1950

Dupas 1981
Kalkboek

Malinowski 1979 ROMAN MALINOWSKI: Concrete en mortars in ancient aqueducts. Concrete international 1979 jan., pp. 66-76.

Aanhangsel

Naldini 2001

National s.a.

National cement named trass. [niet uitgegeven document uit archief R. Lemaire].

Pannekoek 1976

Pettijohn 1984

Ploos van Amstel 1973

Reineck 1975

Rijksdienst 1999

Algen, korstmossen en mossen op monumenten, Rijksdienst 1999 [3e dr., ed. princ. Amsterdam [Em. Querido B.V.], 1999].

Rodriguez-Navarro 2000

Ruskin 1849

Salzman 1967

Schober 1995

Schiele 1972

Schueremans 1999

Slotdocument 1994

Staal 1986

J.P. Staal: Metselen in baksteen (bricklaying). Restauratiewademecum 1986/5-10, RV blad (pp. 01-1-01-18).

Teutonico 1996

Torsello 1998

Tucker 1991

Tyghem 1966

Vicat 1837

Vierl 1975

Viersen 1991

Van de Vijver 1997 I

Van de Vijver 1997 II

Vitruvius s.a.

Voorschriften 1882

VV 1988

Kalkboek

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Publication Details</th>
</tr>
</thead>
</table>
Aanrijken
Het ten gevolge van de inwerking van diverse soorten van processen toenemen van de concentratie of hoeveelheid van een bepaalde component op een bepaalde plaats.

AAS
Chemisch-analytische techniek, Atomaire Absorptie Spectrometrie. ⇒ hoofdstuk 5 § 1.4.

Additief, additieven
Stof die aan het basisrecept van een mortelspecie (bindmiddel, toeslagstof en water) wordt toegevoegd om de eigenschappen te beïnvloeden. Voorbeelden van additieven zijn luchtbelvormers en plastificerders. ⇒ hoofdstuk 5 § 1.1 & 1.2.

AES
Chemisch-analytische techniek, Atomaire Emissie Spectrometrie. ⇒ hoofdstuk 5 § 1.4.

Afgerond zand
⇒ Zand met goed afgeronde korrels (⇒ Afronding), in tegenstelling tot ⇒ scherp zand. Vaak tevens een zand met een wat groter aandeel kleinere korrels.

Afronding
Gesteentekundige aanduiding voor de gladheid van het oppervlak van zandkorrels. Wanneer de korrels glad zijn spreken we van een goede afronding. Wanneer ze daarentegen niet glad zijn spreken we van een slechte afronding. In de bouwkunde is de terminologie ⇒ afgerond zand respectievelijk ⇒ scherp zand.

Afzetting
Afbraakproducten van gesteenten die zijn neergeslagen. Neerslaan, bezinken van deeltjes, waardoor bijvoorbeeld een gesteente wordt gevormd. (⇒ sedimentatie).

Aggregaat
In de bouwkunde worden met deze term de ⇒ toeslagstoffen (zoals zand) van een mortel aangeduid.

Aluinaarde
Aluminiumoxide (Al₂O₃). ⇒ hoofdstuk 2 § 2.9.

Amorf
Niet kristallijn, glasachtig. Een materiaal dat zo snel gevormd wordt dat het geen tijd heeft om kristallen te vormen. Dergelijke materialen zijn vaak minder stabiel en dus reactiever dan de (meer) kristallijne vorm ervan.

Amsterdams cement
Synthetisch puzzolaan. Een roodachtig poeder met hydraulische eigenschappen, dat werd verkregen uit gebakken klei uit het IJ. Vergelijkbaar met Cazius-cement. Het werd gebruikt als alternatief voor tras. ⇒ hoofdstuk 2 § 2.8 & hoofdstuk 3 § 2.4.

Anorganische processen
Processen die verlopen zonder de interactie van organismen. Voorbeeld: alle vormen van neerslag van carbonaat waarbij het carbonaat ten gevolge van oververzadiging uit het water neerslaat, bijvoorbeeld ten gevolge van verdamping van carbonaathoudend water, zoals bij de vorming van travertijn nabij warme bronnen.

Antropogeen
Door mensen teweeggebracht. Bij de bespreking van (invloeden op) degradatieprocessen gebruikt om daarin een onderscheid aan te brengen tussen de menselijke factor en (invloeden op) degradatieprocessen voortkomend uit omgevingsfactoren, zoals weers- en klimaatinvloeden. Items als luchtverontreiniging, hoewel voor een belangrijk deel te wijten aan invloeden van organisme wordt doorgaans onder omgevingsfactoren gerekend. Tot de antropogene processen worden dan de meer directe invloeden gerekend, zoals slijtage, vandalisme, onjuiste vormen van onderhoud, niet-compatibele reparaties, schade als gevolg van (verkeerd) gebruik en dergelijke.

Aragoniet
Mineraal, behorende tot de mineralogische groep van de carbonaten. Calciumcarbonaat (chemisch: CaCO₃) met een van calciet (chemisch eveneens CaCO₃) afwijkend kristalrooster, veelal gevormd in de kalkskeletten van organismen. Calciet wordt niet door levende organismen gevormd. ⇒ hoofdstuk 1 § 1.2 & hoofdstuk 3 § 2.1.

Augiet
Mineraal, behorende tot de mineralogische subgroep der pyroxenen, veelal voorkomend in donkere uitvloeiingsgesteenten als zwarte kristallen die omgeven worden door een glasachtige grondmassa ⇒ hoofdstuk 3 § 2.5.

Authentiek, authenticiteit
In zijn letterlijke betekenis: oorspronkelijk, overeenstemmend met het oorspronkelijke. In de ethiek van de instandhouding is de betekenis van het woord echter verruimd tot alles waaraan, vanuit het perspectief van de erfgoedzorg, waarde wordt toegekend (dat wat het behouden waard is). Ook latere wijzigingen kunnen dus tot de authenticiteit worden gerekend, alsmede immateriële zaken als kennis van eerdere fasen, de vorm, de betekenis etc. In de meest
ruime opvatting staat het begrip authentiek voor de status-quo van het erfgoed in materiële en immateriële zin. De authenticiteit is daarmee een complex en gelaagd begrip.

Bastaardmortel
Mortel die verschillende soorten bindmiddelen bevat en derhalve niet tot één bepaalde groep is te rekenen; meer in het bijzonder een mortel op basis van zowel cement als kalk.

Belgisch(e) hardsteen
⇒ Hardsteen.

Bindmiddel
Materiaal dienend tot verbinding van andere materialen. Meestal het bindmiddel dat = toestlagstoffen (het zand) van mortel onderling en de mortel met stenen verbindt. Bekende bindmiddelen zijn cement, luchthardende kalk en hydraulische kalk.

Blainegetal
Specifieke oppervlak van poedervormige stoffen. Het blainegetal is het gezamenlijke oppervlak van de korrels in vierkante meter per kilogram materiaal. Hoe groter het blainegetal is, des te kleiner is de gemiddelde korrel. Het blainegetal wordt vastgesteld volgens een genormeerde methode.

Blussen
Toevoegen van water aan ongebluste kalk (calciumoxide) om dit om te zetten in gebluste kalk (calciumhydroxide). Men onderscheidt nat blussen – met een teveel aan water, zodat niet al het toegevoegde water in de chemische reactie wordt betrokken en er een kalkdeeg ontstaat (kalk lessen) – en droog blussen, met juist voldoende water voor de chemische reactie, zodat een droog poeder ontstaat.

Boorkern
Monster uit een steen of steenachtige constructie, verkregen met een holle boor.

Bouwfasen
De diverse (doorgaans wat omvangrijkere) ingrepen die de huidige gedaante van een gebouw hebben bepaald. Naast de oorspronkelijke bouw zijn dat bijvoorbeeld restauratieve ingrepen, verbouwingen, renovaties etc.

Bouwhistoricus
Deskundige op het gebied van het cultuurwaardenonderzoek van gebouwd erfgoed, meer in bijzonder op het gebied van de bouw- en bewoningsgeschiedenis.

Bouwhistorisch onderzoek
Aspect van het cultuurwaardenonderzoek, meer specifiek toegespitst op de bouwgeschiedenis (waaronder mede begrepen de architectuurgeschiedenis, de geschiedenis van de bouwtechniek en de geschiedenis van bewoning en gebruik).

Brand, brandlaag, brandlijn
⇒ Styloliet in kalksteensoorten zoals hardsteen.

Brikkenmeel
Synthetische puzzolaan bestaande uit fijngemalen baksteen.

C

Calcietader
Ader van heldere of witte calciet, veelal aanwezig in kalksteen.

Calcietdomein
Concentratie (domein) van onregelmatige vorm en grootte, bestaande uit heldere kristallen van calciet, veelal aanwezig in kalksteen. Bijvoorbeeld de witte vlekken in Belgisch hardsteen.

Calciumhydroxide
Gebluste kalk als bindmiddel in mortels, bestaande uit kalkhydraat, ofwel calciumhydroxide (Ca(OH)\textsubscript{2}). Synoniemen: portlandiet, kalkhydraat, kalk.

Calciumoxide
Ongebluste kalk (CaO), ontstaat door het bij circa 900 °C branden van calciumcarbonaat (kalksteen, marmer of schelpen).

276
Carbonaat
Verbindingen met CO
−
3-groep. In de geologie tevens gebruikt als verzamelnaam voor alle soorten van kalksteen.

Carbonaatafzetting
⇒ Kalkafzetting.

Carbonatatie
Chemische reactie van gebluste kalk (calciumhydroxide) met kooldioxide. Uit de reactie ontstaat calciumcarbonaat (verharde of versteende kalk). ⇒ [met name] hoofdstuk 1 § 1.1, hoofdstuk 2 § 2.6 & § 2.9 & hoofdstuk 3 § 6.3 & §7.

Carbonische koolafzetting
⇒ Kalkafzetting.

Carboon
Geologische periode van 354 tot 290 miljoen jaar geleden in het Paleozoïcum (545 tot 248 miljoen jaar geleden). ⇒ hoofdstuk 3 § 2.1.

Caziuscement
⇒ Amsterdams cement.

Cement
In de geologie het bindmiddel tussen de samenstellende korrels van natuursteen. Matrix die de losse korrels aan elkaar bindt. Bijvoorbeeld silicacement (matrix bestaat uit siliciumoxide) en sparriet (matrix bestaat uit calciumcarbonaat).

Het woord cement werd in het verleden gebruikt voor hydraulisch kalkmortels en voor toeslagstoffen met hydraulische eigenschappen, zoals natuurlijke of synthetische puzzolanen (ook wel kunstcement genoemd).

In de bouwkunde wordt de term tegenwoordig specifiek toegepast als aanduiding van de modernere hydraulische bindmiddelen tussen het⇒agregaat (⇒ toeslagmateriaal) van kunststeen, zoals portlandcement, hoogovencement enz.

Cement wordt verkregen door het malen van cementklinker die ontstaat door het tussen 1250° en 1600°C branden van kleirijke kalk of een mengsel van kalk en klei. Cement bevat met name C3S en C3A, in tegenstelling tot hydraulische kalk, die voornamelijk uit ⇒ CaS bestaat. ⇒ [met name] hoofdstuk 1 § 1.1, § 1.2 & § 3.2, hoofdstuk 2 § 2.10, hoofdstuk 3 § 2.3, § 2.4 & §7.4 & hoofdstuk 5 §3.3 & §3.4.

Cementation index, C.I.
Boynton ontwikkelde in 1966 op basis van de ⇒ hydrauliteitsindex van Vicat de cementation index (C.I.), die een correctie op voorgaande term is:

\[
\text{C.I.} = \frac{2,8 \times \% \text{SiO}_2 + 1,1 \times \% \text{Al}_2\text{O}_3 + 0,7 \times \% \text{Fe}_2\text{O}_3}{\% \text{CaO} + 1,4 \times \% \text{MgO}}
\]

Mortels kunnen zodoende in verschillende hydrauliteitsklassen worden onderscheid, van niet-hydraulisch (C.I. < 0,3) over zwak hydraulisch (0,3 < C.I. < 0,5) en gematigd hydraulisch (0,5 < C.I. < 0,7) tot sterk hydraulisch (0,7 < C.I. < 1,1). ⇒ hoofdstuk 5 § 1.4.

Cendrée de Tournay
⇒ Doornikse asch.

Charter van Venetië
Charter dat is vastgesteld tijdens een bijeenkomst van architecten en ingenieurs in 1964 te Venetië. Het Charter beheurt (ethische) regels volgens welke de instandhouding van monumenten moet plaatsvinden. Het Charter is wereldwijd aanvaard (onder andere door het International Council on Monuments and Sites, ICOMOS) en heeft zijn geldigheid nog niet verloren, ook al zijn er bij latere bijeenkomsten (met name tijdens de Nara-conferentie) belangrijke aanvullingen gedaan.

Chemische processen
Processen waarbij de stof of de stoffen die er aan deel nemen door het ontstaan van ontledingen en verbindingen worden omgezet in een andere stof of in andere stoffen. Bij deze processen kan energie uit de omgeving worden opgenomen of verhitting nodig zijn (endotherm proces) of aan de omgeving worden afgestaan (exotherm proces).

Compatibel, compatibiliteit
Verenigbaar, kunnen samengaan, passend zijn. De mate waarin een materiaal, techniek of bewerking passend is voor de situatie waarin deze wordt gebruikt, met name in de zin dat deze toepassing niet leidt tot schade of de kans op schade vergroot. Het woord compatibel wordt zowel gebruikt met oog op schade in technische zin, als met oog op schade in esthetische zin. ⇒ [met name] hoofdstuk 1 § 2 & hoofdstuk 5 § 1, § 2 & § 3.2.

Compatibiliteit
⇒ Compatibel.

Crinoïden
Zeelelies, bestaande uit een gelede stengel met daarop een tulipachtige kelk. Leven op de zeebodem en hun skelet bestaat grotendeels uit calciumcarbonaat.

Crinoïdenkalk
Bijna zwarte tot zwartblauwe kalksteen, die opgebouwd is uit de restanten van crinoïden (zeelelies). Belgische hardsteen is een soort crinoïdenkalk.

Crypto-florescentie
Het kristalliseren van zouten in een materiaal of ter plaatse van de overgang van twee materialen (altijd onder het materiaaloppervlak). Dit verschijnsel kan gepaard gaan met het loslaten van een laag van het materiaal of bijvoorbeeld
het uitdrukken van de voeg. ⇒ hoofdstuk 4 § 2.1 & § 3.3. Vergelijk ⇒ efflorescentie.

Cultuurwaardenonderzoek
Onderzoek naar de waarden die vanuit het perspectief van de erfgoedzorg kunnen worden toegekend aan cultureel erfgoed, meer specifiek naar de waarden die kunnen worden toegekend aan een object behorend tot het cultureel erfgoed of onderdelen of complexen daarvan.

Dagge(streek)
De dagge is een (enigszins) rondgebogen ijzer met daarop een kleine doorn. De dagge werd gebruikt om voegen af te strijken en zo te verdichten dan wel van een decoratie te voorzien. Dat had tot gevolg dat de zo afgewerkte voegen zich kenmerken door een kleine groef, waarvan de vorm door de doorn werd bepaald. Bij imitaties van deze werkwijze wordt tegenwoordig de voeg veelal afgestreken met een voegspijker, waarna er met een scherp voorwerp een groef in wordt getrokken. ⇒ hoofdstuk 5 § 2.1.

Degradatie
Aantasting. Processen die leiden tot afbraak van materialen, in bijzonder die welke het gevolg zijn van de exposietoestand, zoals weer en wind en invloeden vanuit de bodem, het milieu en vanuit de constructie zelf. Ook antagonogene invloeden kunnen tot degradatie leiden, maar worden vaak onder noemers als slijtage, vandalisme en ondeskundig ingrijpen daarvan onderzocht.

Delfstofkunde
⇒ Mineralogie.

Destructief onderzoek
Tegengestelde van niet-destructief onderzoek. Onderzoek waarbij bijvoorbeeld ten behoeve van onderzoek monsters worden genomen. ⇒ hoofdstuk 5 § 1.2.

Devoon
Geologische periode van 417 tot 354 miljoen jaar geleden in het Paleozoïcum (545 tot 248 miljoen jaar geleden). ⇒ hoofdstuk 3 § 2.1.

Diabas
Geheel uit zwarte en grijze kristallen bestaand gesteente, ontstaan door stolling van een magma.

Diagnose
Onderzoek waarbij wordt gekeken naar symptomen in relatie tot de processen die spelen (met een bepaalde oorzaak en een bepaalde verloop). Hier het onderzoek naar de toestand van een (historisch) gebouw of onderdelen of constructies daarvan, in het bijzonder naar degradatieprocessen (schadediagnose), de daarmee verband houdende symptomen en de oorzaken en het verloop van deze processen.

Dolomiet
Mineraal, behorend tot de mineralogische groep der carbonaten. Calcium-magnesium-carbonaat (CaMg(CO₃)₂). ⇒ hoofdstuk 1 § 1.2 & hoofdstuk 3 § 2.4.

Dolomietkalk
Carbonaatgesteente dat bestaat uit het mineraal dolomiet. Ook wel de aanduiding voor dolomieten, of dolomietachtige calciumpyroxeninaangesteven. Gebran- de dolomitiets kalksteen bevat veel magnesiumoxide (MgO), dat veel trager blust dan calciumoxide (CaO). Hierdoor kunnen magnesiumoxidekristallen in de gebluste kalk langer nablussen dan de calciumoxide, met zwelling van de mortel tot gevolg. ⇒ hoofdstuk 1 § 1.2 & hoofdstuk 3 § 2.4.

Doornikse asch
Synthetische puzzolaan, bestaande uit as van de steenkolen uit Doornikse kalkovens, waarin ook resten gebrande kalksteen aanwezig zijn. ⇒ hoofdstuk 2 § 2.4 & hoofdstuk 3 § 2.4.

Doornikse kalk
Hydraulische kalk verkregen uit gebrande en gebluste zwarte kalksteen afkomstig uit Doornik in België. ⇒ hoofdstuk 2 § 2.7 & § 2.9 & hoofdstuk 3 § 2.1 & §2.4.

Dordtse (Dordsche) cement
Benaming die zowel werd gebruikt voor ⇒ Dordtse tras, als voor een mengsel van kalk en Dordtse tras.

Dordtse tras
Tras die in Dordrecht werd gemalen en verhandeld. ⇒ hoofdstuk 3 § 2.3.

Droog blussen
⇒ Blussen.

Duinzand
Zand dat door de wind vanaf het strand is vervoerd en in de duinstrook is afgezet. Soort endisch zand, stuifzand. ⇒ hoofdstuk 3 § 2.5.

Dunne doorsnede
Synoniemen: dunstippreparaat, stijlplaatje. Microscopisch preparaat van natuursteen of steenachtige materialen (bijvoorbeeld baksteen of mortel) met een
diekte van circa twintig tot dertig micrometer, gemonteerd op een objectglaasje en afgedekt met een dekglaasje. De dikte wordt verkregen door het afslijpen van het overtollige materiaal. ⇒ Fluorescentie-onderzoek, ⇒ Petrografisch onderzoek. ⇒ hoofdstuk 5 § 1.3.

Dunslippreparaat
⇒ Dunne doorsnede.

Dutch tras
⇒ Dordtse tras.

Duurzaam

Geschikt om lang te bestaan, bestendig, lang aanhoudend. Technisch (bouwkundig) wordt dit begrip gehanteerd voor materialen en constructies die naar verwachting lang in goede conditie zullen blijven en (relatief) weinig onder degradatie zullen lijden. In de milieukunde wordt deze term ook gebruikt als de mate waarin toepassing van een materiaal, werkwijze, energiebron of dergelijke een minder negatieve invloed heeft op de handhaving van het natuurlijke milieu. In dat laatste geval wordt gekeken naar de gehele levenscyclus van een materiaal, vanaf de winning van de grondstoffen tot en met het effect van de uiteindelijke afvalproducten en mogelijk hergebruik.

Duurzaamheid

Efflorescentie

Uithooi (van zouten) aan het oppervlak van een materiaal of constructie. ⇒ hoofdstuk 4 § 2.1 & § 3.3. Vergelijk ⇒ crypto-fluorescentie.

Emissie

Chemische reactie die warmte nodig heeft (opneemt) om voortgang te vinden. ⇒ Chemische processen.

Eolisch zand

Zand dat door de wind is vervoerd en afgezet. ⇒ hoofdstuk 3 § 2.5.

Erfgoed

Geheel aan nalatenschap voor zover daaraan door een persoon, groep of samenleving natuurwaarden of (cultuur)historische waarden worden toegekend. Hier met name cultureel erfgoed, in de zin van overlevering, documenten, objecten en terreinen waarvan cultuurhistorische waarden worden toegelaten. Het cultureel erfgoed is breed van aard en omvat onder andere tradities, literatuur, zang, dans, muziek, schilderijen, beeldhouwwerken, instrumenten, gebruiksvoorwerpen, relieken, monumenten en landschappen.

Erosie

De inslijpende werking van stromend water, wind of ijs, al dan niet beladen met de afbraakproducten van gesteenten ten gevolge van verwering.

ESEM

Environmental Scanning Electron Microscopy. ⇒ Rasterelektronenmicroscoop. Steeds vaker wordt in plaats van een gewone rasterelektronenmicroscoop gebruik gemaakt van ESEM, omdat je die ook als gewone rasterelektronenmicroscoop kunt gebruiken. Bij ESEM ligt de maximale vergroting, onder andere vanwege het gebruik van niet gecoate preparaten, lager. Tussen de 10 000 en 20 000 keer is een redelijk gemiddelde voor de met ESEM te bereiken vergrotingen.

Ethicus

⇒ Ethiek.

Ethiek

De leer van goed en kwaad. Ethiek is een vorm van praktische filosofie, die de opvattingen over goed en kwaad van individuen en meer in het bijzonder van groepen en samenlevingen (moraal) bestudeert en hierin wetmatigheden tracht te onderscheiden. Filosofen hebben zich al vanaf de klassieke oudheid met ethiek bezig gehouden. Wetgeving is voor een niet onbelangrijk deel te beschouwen als vertrende moraal en kan uit dien hoofde mede tot het vakgebied van de ethiek worden gerekend. Naast ethiek vanuit verschillende levensbeschouwelijke invalshoeken is er ook sprake van ethiek die meer gericht is op specifieke vakgebieden, zoals de medische ethiek en de ethiek van de instandhouding (van het erfgoed). ⇒ hoofdstuk 1 § 2; § 2.6.

Ettringiet

Verbinding die ontstaat uit de reactie van tricalcium-aluminaat met gips (3 CaO · Al₂O₃ · 3 CaCO₃ · 32 H₂O). Er moet onderscheid worden gemaakt tussen primair ettringiet en secundair ettringiet. Primair ettringiet ontstaat in de nog plastische, cementmorfie dankzij een bewust aan de cement toegevoegde kleine hoeveelheid gips. Dankzij primair ettringiet wordt de verhardingsreactie enige tijd vertraagd, zodat men de tijd heeft de specie te verwerken voordat het feitelijke verhardingsproces begint. Secundair ettringiet ontstaat in een (verharde) cementmortel onder invloed van sulfaten in aanwezigheid van veel vocht. Het is een (bij de reactie) zwelende verbinding, die tot schade aan de mortel zal leiden. ⇒ hoofdstuk 4 § 3.4.

Ethiek van instandhouding

Tak van de ethiek die zich met name bezig houdt met de instandhouding van cultureel erfgoed. Ze houdt zich bezig met de vraag op welke wijze die instandhouding zo kan plaats vinden dat deze als goed bestempeld mag worden. Instandhoudingsethiek onderscheidt zich van opvattingen (over restaureren)
Kalkboek

onder andere in de zin dat een opvatting persoonsgebonden is en de ethische uitgangspunten juist zo veel en zo breed mogelijk in gezamenlijkheid worden bediscussieerd en vastgesteld. Daarbij ontstaat *versteende moraal* in de vorm van wetgeving, charters en dergelijke, die noodzakelijkerwijs algemeen van karakter is. Voor elk specifiek instandhoudingsprobleem zal men daarom een daarvan afgeleide redenering moeten volgen, gebruik makend van de grondbeginselen welke in de *versteende moraal* zijn vastgelegd en van een binnen de ethiek algemeen geaccepteerde aanpak, zoals een *consistentie* wijze van redeneren.

Exotherm
Chemische reactie waarbij warmte vrijkomt wanneer deze plaats heeft. ⇒ Chemische processen. Een voorbeeld van een exotherme reactie is het blussen van kalk.

Friedels zout
3 CaO · Al₂O₃ · CaCl₂ · 10 H₂O. ⇒ hoofdstuk 4 § 2.1 & § 3.5 & hoofdstuk 5 § 3.4 vraag 16.

Fijn grind
⇒ Grind, waarvan de korrels in grootte kunnen variëren van twee tot vier millimeter. In de morteltechnologie wordt deze fractie tot het zand gerekend. ⇒ hoofdstuk 3 § 2.5.

Fluorescentieonderzoek
Microscopisch onderzoek met doorvallend violet licht aan dunne doorsneden van ongestoorde monsters die onder vacuüm met een fluorescerende hars zijn geimpregneerd. Op plaatsen waar de hars kon doordringen gaat deze groen fluoresceren, waardoor de open structuren (onder andere poriën) zichtbaar kunnen worden gemaakt. ⇒ Boorkern, Dunne doorsnede. ⇒ hoofdstuk 5 § 1.3.

Fossiele brandstof
Brandstof die is ontstaan uit resten van prehistorische plantengroei of uit resten van prehistorisch dierenleven, zoals steenkool, aardolie en aardgas. In tegenstelling tot *duurzame energiebronnen* zoals windenergie, waterkracht, getijdenenergie en zonne-energie is de hoeveelheid fossiele brandstof beperkt en zullen de bronnen op den duur uitgeput raken.

Fresco
Muur- of plafondschildering met een kalkverf (een kalksuspensie, opgeroerd met pigmenten) op een verse laag kalk. ⇒ hoofdstuk 3 § 4.1.

Fysische processen
Thans natuurkunde, de leer van natuurlijke (fysische) processen.

Gebluste kalk

Geconsolideerd
De aanwezigheid van samenhang tussen de afzonderlijke deeltjes in een sediment, ten gevolge van een cement of matrix dat de deeltjes aaneenkit. Geconsolideerde sedimenten, zoals *zandsteen*, zijn dus samenhangend. ⇒ hoofdstuk 3 § 2.1 & § 2.5.

Gelaagdheid
Opeenvolging van lagen sediment of natuursteen ten gevolge van wisselende omstandigheden tijdens de afzetting van het materiaal. Bij beschouwingen over *authenticiteit* wordt met de gelaagdheid bedoeld, dat er niet één authenticiteit is, maar dat er telkens een groot aantal aspecten een rol spelen, die elk in een zekere mate bijdragen aan de (totale) authenticiteit (het totaal van betekenissen van het erfgoed).

Gele oker
Een geeloranje pigment. Fijngemalen limoniet. ⇒ hoofdstuk 1 § 2.1 & hoofdstuk 3 § 2.5.

Gestoord monster
Monster ten behoeve van materiaalkundig onderzoek, dat door de wijze van bemonstering niet intact is gebleven, of dat ten behoeve van het onderzoek is vermalen of gehomogeniseerd.

Glaciaal zand
Zand dat door stromend ijs is meegevoerd of is opgeploegd en is afgezet na het smelten van het ijs. ⇒ hoofdstuk 3 § 2.5.

Glasachtig
⇒ Amorf.

Glaucconiet
Groen mineralen, behorende tot de mineralogische subgroep der Phyllosilicaten (bladspiljters).

Glaconietzand
Zand dat door de aanwezigheid van het mineraal glauconiet groen van kleur is.

Graniet
Geheel uit licht geldeurde kristallen opgebouwd gesteente, ontstaan door de stoling van een magma. De drie hoofdmineralen van graniet zijn kwarts, veldspaat en mica. ⇒ hoofdstuk 3 § 2.5.

Granulaat
Korrelige massa. ⇒ hoofdstuk 1 § 1.1 & § 3.3.

Grind
Een niet samenhangend (niet geconsolideerd) sediment, waarvan de korrels in grootte kunnen variëren van twee tot 64 millimeter. Veelal opgebouwd uit kor-
Aanhangsel

rels van het minerala kwarts en van diverse soorten gesteenten, waaronder zandsteen en kwartsiet. In de morteltechnologie wordt de fractie fijn grind (twee tot vier millimeter) als zand aangemerkt ⇒ hoofdstuk 3 § 2.5.

Grof grind

Grind, waarvan de korrels in groote kunnen variëren van 32 tot 64 millimeter.

Grofkristallijn

Aanduiding van de grootteklasse van kristallen: (gesteente met kristallen met) afmetingen tussen vijf en dertig millimeter. ⇒ hoofdstuk 3 § 2.1.

Hardsteen

Ook Belgische hardsteen, arduin of blauwe hardsteen genoemd. Een soort crinoïdenkalkstenen. ⇒ hoofdstuk 2 § 2.4 & hoofdstuk 3 § 2.1.

Herbehandelbaar

Herbehandelbaarheid (retreatability). De mogelijkheid om een behandeling te herhalen, op dezelfde wijze of in een aangepaste vorm. Het resultaat van een ingreep (reparatie, restauratie, behandeling) heeft in principe slechts een tijdelijk karakter en de kans bestaat dat een eerste behandeling onvoldoende resultaat geeft. Het moet daarom mogelijk zijn een behandeling te herhalen of na een behandeling een andere behandeling toe te passen. ⇒ hoofdstuk 1 § 2.4.

Hergebruik

Het tweede leven van een product. Nadat het product toegepast is geweest voor zijn aanvankelijke bestemming kan dat product opnieuw worden gebruikt, in zijn oorspronkelijke vorm of als grondstof voor de vervaardiging van een nieuw product.

Herstelbaar, herstelbaarheid (Repairability, reparable). De mogelijkheid om na een ingreep of behandeling nog reparaties uit te voeren. Bijvoorbeeld de vraag of na een waterafstotende behandeling nog voegwerkherstel plaats kan vinden.

Hervogewerk

Herstelmethode voor metselwerk waarvan de mortel in de voegen is aangetast, waarbij de voegruimte wordt uitgeruimd, waarna er in deze ruimte een voegmortel wordt aangebracht.

Hydratatiereactie

Reactie van hydraulische bestanddelen in bindmiddelen (bijvoorbeeld hydraulische kalk) met water onder vorming van een verhardende gel, die bijdraagt aan de eindsterkte van de mortel. ⇒ hoofdstuk 3 § 4.1, § 6.3, § 7.2 & §7.4.

Hydrauliciteitsindex, H.I.

Maat voor de hydrauliciteit berekend door Vicat.

\[\text{H.I.} = \frac{\%\text{SiO}_2 + \%\text{Al}_2\text{O}_3 + \%\text{Fe}_2\text{O}_3}{\%\text{CaO}} \]

Op basis daarvan is in 1966 door Boynton de ⇒ cementation index (C.I.) ontwikkeld. ⇒ hoofdstuk 2 § 2.3 & hoofdstuk 5 § 1.4.

Hydraulisch

Verhardend door een chemische reactie met water. In staat om ook onder water (afgesloten van de lucht) te verharden.

Hydraulische kalk

Kalk die het vermogen bezit om hydraulisch te kunnen verharden.

Hydrofoberen

Behandelen (van een steenachtige constructie) met een waterafstotend preparaat. Een niet ⇒ reversibele behandeling ⇒ hoofdstuk 1 § 2.3, die met de nodige terughoudendheid moet worden toegepast ⇒ hoofdstuk 4 § 2.2. ⇒ [verder] hoofdstuk 4 § 2.1, § 3.2, §3.5 & §3.6.

Hygroscopisch

In staat om water uit de lucht aan zich te binden ⇒ hoofdstuk 4 § 3.6 & § 3.11 & hoofdstuk 5 § 1.2 & §1.4.

Hygroscopisch vochtgehalte

Het evenwichtsvochtgehalte van een (al dan niet met hygroscopisch zout be- last) bouwmateriaal bij een bepaalde relatieve vochtigheid van de lucht.

Hypothekeren

Als onderpand (hypotheek) stellen. Hier in de zin dat een ingreep mogelijk beperkingen oplegt aan ingrepen in de toekomst of deze moeilijker of onmogelijk maken. (⇒ herbehandelbaar, ⇒ herstelbaar).

ICP-MS

Inboetwerk

Het repareren van metselwerk door het vervangen van (beschadigde of gedegra- deerde) stenen.

Igneomagmatische tufafzettingen

Ignimbriet, glaswolk. Afzetting van vulkanische tuf, die niet uit de vulkaanmond de lucht is ingeblazen, maar door zijn zwaarte over de vulkaanhelling naar beneden is geraasd. Ignimbrietens bestaan uit zware vulkanische gassen en gloeiende lava- deeltjes, die door de enorme gasdruk zijn gefragmenteerd. ⇒ hoofdstuk 3 § 2.3.

In de rot zetten

⇒ Rotten. ⇒ hoofdstuk 3 § 4.1 & hoofdstuk 5 § 3.3 & §3.4 vraag 4.

Ion. Ionen

Geladen deeltje, bestaande uit twee of meer atomen. Ionen kunnen positief of negatief zijn geladen.

Kaleien

Afwerken van een muurwerk met een laag (met fijn zand opgedikte) kalkverf. ⇒ hoofdstuk 5 § 4.2 & § 4.3.

Kalk

Bepaalde calciumverbindingen, zoals ongebluste kalk (calciumoxide), gebliste kalk (calciumhydroxide), calciumcarbonaat en hydraulische kalk. Komt in de natuur onder andere voor als kalksteen en als in- en uitwendige skeletten van...

Verder is er ook sprake van benaming afhankelijk van de winplaats (Doornikse kalk, Luikse kalk).

Bouwkunde: gebluste kalk (Ca(OH))\textsubscript{2}: het bindmiddel in kalkmortels, bestaande uit kalkhydrat (calciumhydroxide). Kan zowel hydraulisch als luchthardend zijn.

Bouwkunde: ongebluste kalk (CaO): materiaal verkregen door het branden van kalksteen of schelpen (calciumoxide). Deze betekenis van het woord kalk leidt vaak tot onduidelijkheid, zoals in de zin: "De kalk werd naar Nederland getransporteerd, waar het nat werd geblust op de bouwplaats."

Geologie: alle soorten kalksteen, ofwel gesteenten die (hoofdzakelijk) uit calciumcarbonaat (CaCO\textsubscript{3}) bestaan.

Kalkaarde
Historische term voor kalk, calciumcarbonaat.

Kalkafzetting
In water (meer of zee) afgezet materiaal, dat hoofdzakelijk bestaat uit calciumcarbonaat, waaruit na compactering en gedeeltelijke rekristallisatie kalksteen ontstaat.

Kalkankertjes
Benaming voor de uit de kalkspecie door de baksteen opgezogen kalksuspensie, die hierdoor ter weerszijden van het grensvlak tussen mortel en baksteen aanwezig is en daardoor bijdraagt aan de binding van de mortel aan de baksteen. De baksteen moet wel de mogelijkheid bezitten tot het opzuigen van de kalksuspensie. Klinkers kunnen dit niet tot nauwelijks en te natte bakstenen evenmin.

Kalkbloem
De fijnste kalk, verkregen door het gebluste product machinaal te bewerken.

Kalkbodem
De bodemkundige benaming voor de natue, die hoofdzakelijk bestaat uit calciumcarbonaat en kalksteentjes.

Kalkblok
Blokken van kalksteen.

Kalkbrok
Kalksteenblokken.

Kalkbrokken
Kalksteenbrokken.

Kalkbol
Kalkkern.

Kalkbolletjes
Kalkkernklieren.

Kalkbroedkern
Een kalkkern die door het blussen niet geblust wordt en door zijn hoge ongebluste kalkgehalte een slechte binding geeft.

Kalkbroeikern
Kalkkern wolkenbroek, een kalkkern die door het blussen niet geblust wordt.

Kalkbroc
Kalkbrood, een kalkkern die door het blussen niet geblust wordt.

Kalkbrokker
Een kalkkern die door het blussen niet geblust wordt.

Kalkbrokkels
Kalkkernsbrokken.

Kalkbrokke
Kalkkernbrokken.

Kalkbrokken
Kalkkernbrokken.

Kalkbrokten
Kalkkernbrokken.

Kalkbrokvest
Kalkkernbrokken.

Kalkbrokkels
Kalkkernbrokken.

Kalkbrokken
Kalkkernbrokken.

Kalkbrokken
Kalkkernbrokken.

Kalkbrokken
Kalkkernbrokken.

Kalkbrokken
Kalkkernbrokken.
Kooldioxide, koolzuur
Koolzure kalk
Koolzuurgas
Korrelgrootteverdeling
Krijt
Kristalrooster
Kristalwater
Kritisch bindmiddelgehalte
Kritisch kalkgehalte
Kwartair
Life Cycle Analysis, LCA
Lava
Levende kalk
Lessen
Limoniet

nabijheid van de kust, gevormd op de grens tussen Carboon en Devoon. ⇒ hoofdstuk 3 § 2.1.
⇒ Koolzuurgas.
Kalk, calciumcarbonaat.
Kooldioxide (CO₂). De atmosfeer aan het aardoppervlak bevat 0,03% koolzuurgas. Koolzuurgas wordt gevormd door de oxidatie van koolstof. De overmaat van dit gas is mede verantwoordelijk voor het zogenaamde broeikaseffect. Koolzuurgas wordt gevormd in natuurlijke processen, zoals in de stofwisseling van dierlijk leven en bij verbranding bij vulkaanerupties en bosbranden. Planten onttrekken het gas weer aan de atmosfeer. Zo is een natuurlijk evenwicht ontstaan, dat echter in toenemende mate door menselijke activiteit (verbranding van plantenresten zoals turf en hout en van fossiele brandstoffen) ontregeld raakt.

De verdeling in korrelgrootteklassen van zand. De korrelgrootteverdeling kan zowel van onverwerkt zand worden bepaald, als van verwerkt zand. In dat laatste geval wordt de korrelgrootteverdeling bepaald aan de hand van een zandmonster dat is verkregen uit een mortel (na oplossen van het bindmiddel of door het verdelen van gestoorde monsters), of wordt de korrelgrootteverdeling bepaald met PFM-onderzoek aan ongestoorde mortelmonsters.

Geologische periode van 144 tot 65 miljoen jaar geleden in het Mesozoïcum (248 tot 65 miljoen jaar geleden). Aanduiding van een kalksteen, gevormd gedurende het Krijt, zoals Maastrichter steen. Tevens een algemene aanduiding van een witte, zachte en zeer fijnkorrelige soort zuivere kalksteen.

Geheel uit kristallen van één of meerdere mineralen opgebouwd. Geheel kristallijne gesteenten bevatten om deze reden geen glasachtige (amorfe) componenten.

Een richting in een mineral, die bepaald wordt door het kristalrooster van dat mineral. Een voorbeeld van een kristallografische richting is de kristallografische splijtrichting van een mineral, de richting waarin dat mineral op grond van zijn kristallografische opbouw gemakkelijk is te splitsen.

Driedimensionale ordening van atomen in een kristal volgens een vast patroon.

Eén of meerdere watermoleculen (·H₂O) die deel uitmaken van het kristalrooster van het mineral. Ook wel gehouden water genoemd. Zo kunnen per gipsmolecuul twee moleculen (kristal)water opgenomen worden in het kristalrooster (CaSO₄ ·2H₂O). Er bestaat echter ook zogenaamd anhydriet (CaSO₄, zonder kristalwater) en halfhydraat (CaSO₄ ·1/2H₂O).

Bindmiddelgehalte, waarbij het luchtgevuld poriënvolume van het toeslagzand juist is opgevuld met bindmiddel, die zich hypothetisch als water gedraagt. Terminologie uit een theoretisch experiment. ⇒ hoofdstuk 3 § 6.

⇒ Kritisch bindmiddelgehalte.

Geologische periode van twee miljoen jaar geleden tot heden, jongste periode van het Kenozoïcum (65 miljoen jaar geleden tot heden). Mineralen behorende tot de mineralogische groep der netwerksilicaten. Siliconoxide (SiO₂). Hoofdfestanddeel van het zand in Nederland. ⇒ hoofdstuk 3 § 2.5.

Analyse, gebruikt om het milieueffect van een bepaald materiaal te kunnen vergelijken met dat van andere materialen. Met deze analyse van de levenscirkel wordt het materiaal van het moment van winning van de grondstoffen tot en met het moment waarop het afval is geworden tegen het licht gehouden. ⇒ TWIN-model.

Gesmolten gesteente, dat uit een vulkaan vloeit. De afgekoeld en gestolde lava wordt uitvloeisingsgesteente genoemd. ⇒ hoofdstuk 3 § 2.3.

⇒ Ongebluste kalk. ⇒ hoofdstuk 2 § 2.9 & hoofdstuk 3 § 2.1 & § 5.

Kalk lessen: kalk met water verzadigen, nat ⇒ blussen.

Mineraal behorende tot de mineralogische groep der oxid en hydroxiden. IJ-zeroxidoxydioxide met wisselende hoeveelheden gebonden water (FeO · OH · xH₂O). Het pigment gele oker is fijn gemalen limoniet. Mag beschouwd worden als in de natuur gevormde rust. Onder andere voorkomend in de vorm van klei-
ne boontjes in zand en als coating van zandkorrels. ⇒ hoofdstuk 3 § 2.1 & § 2.5.

Löss
Grondsoort bestaande uit zeer fijn zand dat door de wind over een grote afstand landinwaarts is aangevoerd en in Zuid Limburg door afname van de windsnelheid (heuvels) is afgezet. ⇒ hoofdstuk 3 § 2.5.

Luchtbelvormer
⇒ Additief. ⇒ hoofdstuk 2 § 2.11, hoofdstuk 4 § 3.2 & 3.7 & hoofdstuk 5 § 3.4 vragen 8, 9 & 10.

Luchtgevuld poriënvolume
Het volume aan lucht dat aanwezig is tussen de korrels in droog zand. Bedraagt, wanneer de zandkorreltjes even groot en bolvormig zijn en het geheel van korrels en lucht een minimaal volume inneemt, ongeveer éénderde van het volume aan zand. ⇒ Kritisch bindmiddelgehalte. ⇒ hoofdstuk 3 § 6.3 & hoofdstuk 5 § 2.3.

Luchtthardend
Eigenschap van een bindmiddel: in staat zijn tot verharding door de chemische reactie met koolzuurgas (uit de lucht). ⇒ [met name] hoofdstuk 1 § 1.1 & § 1.2 & hoofdstuk 3 § 2.1, § 3 & § 4.1.

Luikse kalk
Niet tot zeer zwak hydraulische kalk, verkregen door het branden en blussen van kalksteen uit de omgeving van Luik. ⇒ hoofdstuk 2 § 2.7 & hoofdstuk 3 § 2.1.

Marien zand
⇒ Zeezand. ⇒ hoofdstuk 3 § 2.5.

Maastrichter steen

Magnesiumkalk
⇒ Dolomietkalk. ⇒ hoofdstuk 1 § 2.1 & hoofdstuk 2 § 2.1.

Mergel
⇒ Maastrichter steen.

Mergel
Soort natuursteen, bestaande uit een mengsel van kalk en klei. Het aandeel klei moet groter zijn dan 25%. Is dit aandeel kleiner, dan wordt gesproken van kleiige, kleihoudende, of kleiarme kalksteen. ⇒ hoofdstuk 1 § 2.1, hoofdstuk 2 § 2.9, hoofdstuk 3 § 2.1, hoofdstuk 4 § 2.2 & hoofdstuk 5 § 3.2.

Metselmortel (metselspecie)
Mortel (specie) gebruikt voor het metselen. In een stapelconstructie van natuursteen of metselwerk heeft de metselmortel twee functies. De mortel vult onefenheden op die ontstaan doordat de gestapelde stenen niet nauwkeurig op elkaar kunnen aansluiten en zorgt voor een verbinding van elke steen aan de mortel en daarmee voor een verbinding van de stenen aan elkaar. ⇒ hoofdstuk 1 § 1.1, § 2.1, § 2.4 & § 3.1, hoofdstuk 3 § 2.9, hoofdstuk 4 § 3.2, § 3.3, § 3.4 & § 3.6 & hoofdstuk 5 § 1.1, § 1.3, § 3.2, § 4.4 & § 4.5.

Mica
Glitter. Groep van bladvormige mineralen die behoren tot de mineralogische subgroep der phyllosilicaten (bladsplijters). ⇒ hoofdstuk 2 § 2.1 & § 2.5.

Microstructuur
Structuur van een materiaal die alleen door bestudering met een microscoop zichtbaar gemaakt kan worden. ⇒ hoofdstuk 5 § 2.1.

Milieueffectrapportage
Verslaglegging van het onderzoek naar de (ecologische) gevolgen voor het milieu van een ingreep op korte en lange termijn. (Bijvoorbeeld het verslag van de gevolgen die het ecosysteem van de Waddenzee zal ondervinden van het opzuigen van schelpen uit schelpbanken ten behoeve van de fabricage van schelpkalk). ⇒ hoofdstuk 3 § 2.2.

Mineraal pigment
Pigment dat verkregen wordt door het fijnmalen van minerale substantie. ⇒ hoofdstuk 1 § 2.1.

Mineralogie
Delfstoffkunde.

Mirabiliet
NaSO₄ · 10H₂O. ⇒ hoofdstuk 4, § 3.3.

Monument
Bewijsstuk, meer in het bijzonder een zaak die is gemaakt of opgericht om als herinnering aan het verleden of iets of iemand uit het verleden te dienen of een zaak waaraan die herinnering is toegekend. Cultuurhistorisch erfgoed. In het bijzonder (resten van) bouwwerken en gebouwen waaraan cultuurhistorische waarden worden toegekend.

Monument
In juridische zin worden binnen de monumenten de beschermde monumenten onderscheiden. Voor beschermde monumenten geldt dat een overheid – bijvoorbeeld met een vergunningenstelsel – namens de gemeenschap een zekere zeggenschap opeist.

Mortel
Droog mengsel van verschillende soorten stoffen (vulmiddel, bindmiddel, toeglagen) die na mengen met water een specie vormen die geschikt is als plastisch (bouw-)materiaal voor specifieke doeleinden en die na uitharding tot een samenhangend mengsel van vaste stoffen wordt. De benaming mortel wordt ook gebruikt voor het product dat ontstaat na de verharding van een (mor
Aanhangsel

tel|specie. ⇒ [met name] hoofdstuk 1 § 1.1, hoofdstuk 3 § 6 & hoofdstuk 5 § 3.

Muschelkalk(steen)
Duitse kalksteen die opgebouwd is uit fossiele schelpen. Niet te verwarren met schelpkalk, die verkregen wordt door het branden en blussen van schelpen. ⇒ hoofdstuk 3 § 2.1.

Naaldproef
Historische keuringsmethode om de bindkracht van mortels vast te stellen, uitgevoerd met het toestel van Vicat.

Nara-conferentie
Conferentie over de instandhouding van monumenten, gehouden in 1994 in Nara (Japan). De conferentie concentreerde zich met name op het begrip autenthiciteit en vormde een reactie op de nogal eurocentrische strekking van het Charter van Venetië. Met name de instandhouding van het savoir-faire, het kunnen maken (instandhouding van het ambacht) speelt in het slotdocument een belangrijke rol. ⇒ hoofdstuk 1 § 2.1.

Nat blussen
⇒ Blussen. ⇒ [met name] hoofdstuk 3 § 4.1.

Nat chemisch onderzoek
Chemisch onderzoek aan vermalen monsters of hun extracten met gebruikmaking van chemicaliën. ⇒ hoofdstuk 5 § 1.4.

Natuurlijke puzzolaan
Pregelaan, verkregen door het vermalen van in de natuur gevormde materialen met een amorfe of glasachtige component, zoals tufsteen. ⇒ hoofdstuk 2 § 2.2 & §2.3 & hoofdstuk 3 § 2.3 & §2.4.

Navoegwerk
Werkwijze waarbij de metselmortel nabij het buitenoppervlak van het metselwerk wordt weggelaten of voor de verharding weer wordt weggekрабd, waarna vervolgens met een voegmortel dit buitenste deel van de voegruimte wordt gevuld en op een bepaalde manier wordt afgewerkt. ⇒ hoofdstuk 2 § 2.5 & § 2.9 & hoofdstuk 4 § 3.9.

Niet-destructief onderzoek
Vaak afgekort tot NDO. Onderzoek waarbij het te onderzoeken object onbeschadigd blijft. Bij veel onderzoekstechnieken gaat het te onderzoeken object (voor een deel) verloren. Bij dit destructief onderzoek wordt bijvoorbeeld een mortelkubus tot bezwijken belast om de druksterkte te bepalen. Ook onderzoek waarbij het te onderzoeken object wordt beschadigd, bijvoorbeeld omdat men er een monster uit neemt, om dit in een laboratorium te kunnen onderzoeken. Als nuance tussen niet-destructief onderzoek en destructief onderzoek onderscheidt men ook weinig-destructief onderzoek, waarbij de schade aan het te onderzoeken object gering (te verwaarlozen) is. ⇒ hoofdstuk 5 § 1.2.

Oker
Verzamelnaam voor de pigmenten rode en gele oker. ⇒ hoofdstuk 1 § 2.1, hoofdstuk 3 § 2.2 & hoofdstuk 5 § 4.3.

Ongebluste kalk
Calciumoxide (CaO), ontstaan door het branden van kalksteen, marmer of schelpen. Vroeger ook wel levens kalk genoemd. Wordt met water geblust tot kalkhydraat. ⇒ hoofdstuk 1 § 1.1, hoofdstuk 2 § 2.4 & §2.9, hoofdstuk 3 § 2.1, § 3.1, § 4.1, § 5 & § 7.1 & hoofdstuk 5 § 4.4.

Ongeconsolideerd
Het ontbreken van samenhang tussen de afzonderlijke deeltjes in een sediment, door het ontbreken van een cement of matrix dat de deeltjes aaneenkit. Ongeconsolideerde sedimenten (zoals bijvoorbeeld rivierzand) zijn dus niet samenhangend.

Ongeconsolideerd monster
Monster ten behoeve van materiaalkundig onderzoek dat door de wijze van be-monstering intact is gebleven en dat voor het onderzoek niet gemalen of anderszins verstoord hoeft te worden.

Ontaarding
⇒ Verbastering.

Organische processen
Processe beter erkend tot de organische of koolstofchemie. Oorspronkelijk processen die verlopen ten gevolge van de levensactiviteiten van organismen. ⇒ hoofdstuk 3 § 2.1.

Onzuivere kalksteen
Kalksteen met een belangrijk aandeel van verontreinigingen in de vorm van bijvoorbeeld klei of zand. Voorbeelden: kleirijke kalksteen en zandige kalksteen.

Opaak erts
Term uit de microscopic. Erts dat in een slijplaatje ondoorzichtig is. ⇒ hoofdstuk 3 § 2.1.

Parkers cement
⇒ Roman cement. ⇒ hoofdstuk 2 § 2.9.

Peperino
Natuursteensoort. Handelsnaam voor Italiaans trachiet en trachietische tufsteen uit het gebied rondom Viterbo. ⇒ hoofdstuk 3 § 2.3.

Petrografisch onderzoek
Een klassieke onderzoeksmethode uit de geologie, waarbij circa twintig tot dertig micrometer dunne doorsneden in doorvallend wit gepolariseerd licht met gebruikmaking van een polarisatiero microscoop worden bekeken. Bij deze geringe dikte zijn de meeste componenten doorzichtig en kunnen hierdoor worden gedetermineerd. Aldus wordt de mineralogische samenstelling van ge- steenten bepaald, alsmede de interne structuur, oftewel de textuur, de wijze
waarop de componenten in het materiaal aanwezig zijn. ⇒ hoofdstuk 4 § 3.4 & hoofdstuk 5 § 1.3, § 3.2, § 4.1 & § 4.4.

PFM-onderzoek

Petrografisch en fluorescentiemicroscopisch onderzoek. ⇒ Petrografisch onderzoek.

Plaaster

In België gehanteerde benaming voor gips. Door de verwarring met het Frans plâtre de Paris ontstane uitdrukking.

Placerzand

Zand, aangerijkt aan korreltjes van zware mineralen, of geheel hieruit bestaand. Bijvoorbeeld zirkoonzand. ⇒ hoofdstuk 3 § 2.5.

Plastifieerder

⇒ Additief. ⇒ hoofdstuk 2 § 2.11.

Pleister

Afwerklaag op muurwerk gevormd met een (pleister)mortel. Vaak bestaan pleisters uit verschillende lagen van onderling verschillende mortels en van verschillende dikte. ⇒ hoofdstuk 1 § 1.1 & § 2.1, hoofdstuk 2 § 2.1, § 2.2, § 2.4, § 2.5 & § 2.9, hoofdstuk 3 § 4.1, hoofdstuk 4 § 3.3, § 3.6 & § 3.11 & hoofdstuk 5 § 3.2, § 4.3 & § 4.4.

Point-counting

Microscopische techniek. Van een slijpplaatje wordt voor elk punt van een ingesteld raster (bijvoorbeeld van 0,5 x 0,5 mm) geregistreerd op welk mineral dit punt is gelegen. Het aantal punten wordt voor elk van de afzonderlijke bestanddelen geregistreerd. Op grond van het totaal aantal geregistreerde punten worden de mineralen vervolgens uitgedrukt in volumepercentages. De telling wordt uitgevoerd bij honderdvoudige vergroting. ⇒ hoofdstuk 5 § 1.3.

Polarisatiemicroscoop

Optische microscoop (vergroting tot 500 maal) waarmee circa twintig tot dertig micrometer dunne preparaten van natuursteen of steenachtige materialen kunnen worden bestudeerd in doorvallend en opvallend wit gepolariseerd licht. Wordt (veelal door geologen) gebruikt voor het PFM-onderzoek (petrografisch onderzoek), eventueel in combinatie met het fluorescentieonderzoek. ⇒ hoofdstuk 3 § 6.2, hoofdstuk 4 § 3.1 & hoofdstuk 5 § 1.3.

Poriestructuur

De driedimensionale verdeling in ruimte en grootte van (macro)poriën in een materiaal, of de aanwezigheid van microporiën met een capillair zuigend vermogen. ⇒ hoofdstuk 5 § 1.3.

Portlandiet

Mineralogische aanduiding voor Calciumhydroxide (Ca(OH)_2). ⇒ hoofdstuk 3 § 2.1, § 2.2 & § 2.3.

Primair

⇒ Secundair.

Puzzolaan

Poedervormige stof die aan specie wordt toegevoegd en met de vrije kalk en water uit de specie reageert onder vorming van reactieproducten die een bijdrage leveren aan de sterkte en de waterdichtheid van de mortel. Genoemd naar het Italiaanse Pozzuoli aan de voet van de Vesuvius. De Romeinen voegden de vulkanische aarde aan specie toe, omdat deze de specie een gunstigere sterkteontwikkeling verleende. Een in Nederland en Vlaanderen bekende natuurlijke puzzolaan is tras, gemalen tufsteen uit de Duitse Eifel. Soms werden gemalen dakpannen als synthetisch puzzolaan aan species toegevoegd. ⇒ hoofdstuk 1 § 1.2, hoofdstuk 2 § 2.1, § 2.2, § 2.3 & § 2.5, hoofdstuk 3 § 2.3, § 2.4, § 6.2, § 6.3, § 7.3 & § 7.5, hoofdstuk 4 § 3.8 & hoofdstuk 5 § 1.3, § 3.2, § 3.4 vragen 1, 6 & § 7 & hoofdstuk 5 § 1.2.

Rasterelektronenmicroscoop

Microscoop waarbij gebruik gemaakt wordt van een elektronenbundel, waar door een sterk vergroot beeld (tot 10 000 maal) met grote scherpheid wordt opgeroepen. Het beeld wordt verkregen door het afscanen van een bepaald gebied volgens een raster. Op de preparaten wordt vooraf een uiterst dunne coating aangebracht. ⇒ ESEM. ⇒ hoofdstuk 4 § 3.4, § 3.5, § 3.6 & § 3.11 & hoofdstuk 5 § 1.2.

Receptuur

Samenstelling en bereidingswijze; kennis van het klaarmaken van recepten en de bereidingswijze.

Recycling

⇒ Hergebruik.

REM

Röntgen Elektronen Microscopic, tegenwoordig vaak met de Engelse term (Scanning Electron Microscopy, SEM) aangeduid. ⇒ Rasterelektronenmicroscoop.

Renovatie

Vernieuwing, vernieuwbouw.

Repairability

⇒ Herstelbaar.

Reparabel

⇒ Herstelbaar.

Restaurateur

⇒ Hersteller van beschadigde kunstwerken. (⇒ restauratie).

Restauratie

Herstel. Het terugbrengen in oorspronkelijke toestand of een eerdere verschijning of schade te herstellen en latere ingrepen ongedaan te maken. Restauratie is echter een idee-fixe, in de zin dat het onmogelijk is een oorspronkelijke of eerdere vorm volledig te kennen en het derhalve tevens onmo-
Aanhangsel

gelijk is die volledig te reproduceren. Restauratie is derhalve altijd een interpretation van een oorspronkelijke of eerdere vorm.

Restauratieprotocol
De op schrift gestelde voorgenomen handelingen ten behoeve van het uitvoeren van een restauratie. Maakt deel uit van het restauratiebestek. ⇒ hoofdstuk 5 § 4.1.

Retouche
Bijwerking, correctie. Wijze van bijwerken van storende elementen zoals stofjes en krassen die bij het fotografisch afdrukken van een negatief zichtbaar worden of het vullen of onttrekken van lauemes in bijvoorbeeld schilderijen. ⇒ hoofdstuk 1 § 2.1.

Retreatability
⇒ Herbehandelbaar.

Reversibel, reversibiliteit
De mogelijkheid om een ingreep weer ongedaan te maken of de mate waarin deze mogelijkheid bestaat. (Mate van) omkeerbaarheid van een proces. ⇒ hoofdstuk 1 § 2.2 & hoofdstuk 5 § 2.1.

Rivierzand
Zand dat door rivieren is vervoerd en afgezet (is gesedimenteerd). Een soort fluidiatiel zand. ⇒ hoofdstuk 2 § 2.2 & hoofdstuk 3 § 2.5.

RMA
⇒ Röntgen Micro Analyse.

Rode oker
Rood pigment. Fijn gemalen hematiet (een mineraal, behorende tot de mineralogische groep der oxid en hydroxiden). Ijzeroxide (Fe$_2$O$_3$). ⇒ hoofdstuk 1 § 2.1 & hoofdstuk 5 § 4.3.

Röntgen Micro Analyse
Chemisch-analytische techniek, gebruikt in combinatie met rasterelectronen-microscopie. Hierbij worden elementen geanalyseerd op grond van teruggestraalde röntgenstralen, die onder een hoogenergetische elektronenbundel worden opgewekt. De golflengte is karakteristiek voor het element. ⇒ hoofdstuk 4 § 3.3 & hoofdstuk 5 § 1.2.

Roman cement

Rood of rode cement
Benaming die zowel werd gebruikt voor ⇒ Amsteldams- of Casiuscement als voor een mengsel bestaande uit schelpkalk en ⇒ brikkenmeel. ⇒ hoofdstuk 2 § 2.8 & hoofdstuk 3 § 2.4.

Rotten, in de rot zetten
Langdurig blussen (lessen) van kalk. Proces waarbij kalk gedurende een periode van enkele dagen tot vele jaren vochtig of nat wordt bewaard. ⇒ hoofdstuk 2 § 2.7, hoofdstuk 3 § 4.1 en hoofdstuk 5 § 3.4 vragen 4 en 9.

Salteren
Wijze van voortbewegen van zand door de wind, waarbij zandkorreltjes over een korte afstand door de wind worden meegevoerd en bij het neerkomen andere zandkorreltjes opduwen, waardoor deze op hun beurt door de wind worden vervoerd. Door het salteren krijgen zandkorrels een dof oppervlak (slechte afronding). ⇒ hoofdstuk 3 § 2.9.

Sanidien
Mineraal en lid van de mineralogische subgroep der veldspaten, veelal in lava, zoals trachiet, aanwezig als duidelijk herkenbare kristallen, omgeven door een glasachtige grondmassa. Kalium-natrium-aluminium-silicaat (K, Na)[AlSi$_3$O$_8$]. ⇒ hoofdstuk 3 § 2.3 & § 2.5.

Savoir-faire
Kennis en vaardigheid bezitten om (nog) te kunnen maken. Hier: de instandhouding van kennis en vaardigheden op het gebied van oude (traditionele) materialen en technieken. ⇒ hoofdstuk 1 § 2.1.

Schalie
Een uit klei ontstaan vast gesteente ten gevolge van druk met een lichte neiging tot het splijten in één richting. Bij verdere drukverhoging ontstaat uit schalie de goed splijtbare leisteen. ⇒ hoofdstuk 3 § 2.5.

Schelpen
Kalkachtig omhulsel van weekdieren, dat de functie van uitwendig skelet vervult.

Schelpkalk
⇒ Kalk die is vervaardigd door het branden van schelpen. ⇒ [met name] hoofdstuk 1 § 1 & § 3, hoofdstuk 2 § 2.3, § 2.4, § 2.7 & § 2.9 & hoofdstuk 3 § 2.2, § 3.2, § 4.1 & § 7.1.

Scherp zand
⇒ Zand met hoekige korrels (met een slechte afronding), in tegenstelling tot ⇒ afgerond zand). Vaak tevens een zand met een hoger aandeel grove korrels. ⇒ hoofdstuk 3 § 2.5.

Schrake specie
Specie waarin het bindmiddelgehalte zo gering is dat het volume van het bindmiddel-watervensel kleiner is dan het luchtgevulde poriënvolume. De verharde mortel die uit een schrake specie ontstaat bevat hierdoor open, luchtgevulde poriën. ⇒ hoofdstuk 3 § 6.3.

Secundair
Gebruikt ter onderscheiding van primair: in het oorspronkelijke materiaal of de
Kalkboek

Sedimentaire gesteenten
Gesteenten die ontstaan zijn ten gevolge van sedimentatie (afzetting, neerslag, bezinking) van materialen zoals afbraakproducten van gesteenten en skeletten van zeedierjes en de daarop volgende versterening van dit materiaal. ⇒ hoofdstuk 3 § 2.1.

Sedimentatie
Accumulatie van door stromend water, wind of ijs getransporteerde materialen ten gevolge van de afname van het dragend vermogen van deze media door de afname van de stroomsnelheid. ⇒ Sedimentaire gesteenten.

SEM
Scanning Electron Microscopy. ⇒ REM, ⇒ Rasterelektronenmicrocoop.

Sfericiteit
Aanduiding voor de mate van benadering van de bolvorm van zandkorrels. Bij een hoge sfericiteit hebben de korrels (bijna) een bolvorm, bij een lage sfericiteit zijn ze hoekig of plat. ⇒ hoofdstuk 3 § 2.5 & § 6.3.

Silicafume
Zeer reactief kunstmatig puzzolaan (submicroscopisch kleine bolletjes amorf SiO₂). ⇒ hoofdstuk 3 § 2.4.

Silicaten
Mineralologische hoofdgroep, waarbij de kristalloosters opgebouwd zijn uit siliconetetraëdres en andere elementen. ⇒ hoofdstuk 3 § 4, § 7.2, § 7.3 & § 7.4 & hoofdstuk 5 § 1.4 & § 3.4 vragen 12, 14 & 16.

Sinteren
Proces bij hoge temperatuur, waarbij door gedeeltelijk smelten van componenten een amorf, glasachtig materiaal ontstaat, dat de korrels aanenktet. ⇒ hoofdstuk 2 § 2.10, hoofdstuk 4 § 2.2, hoofdstuk 3 § 2.4 & hoofdstuk 5 § 3.2.

Slijpplaatje
⇒ Dunne doorsnede.

Specifiek oppervlak
⇒ Blainegetal.

Spinula bivuda
Schelpensoort. De kleine gladde schelpen die in het verleden aan de stranden van de Noordzee werden vergaard als grondstof voor de productie van schelpkalk. ⇒ hoofdstuk 3 § 2.2.

Specie, mortelspecie
Plastisch mengsel van droge grondstoffen, water en eventuele middelen om eigenschappen als sterkte, aanhechting, verwerkbaarheid en dergelijke te verbeteren. Hier in het bijzonder een specie waarmee kan worden gemetseld, gevoegd of gepleisterd. ⇒ [met name] hoofdstuk 1 § 3.4, hoofdstuk 2 § 2.9, hoofdstuk 3 § 6 & hoofdstuk 5 § 3.3 & § 3.4.

Spoorelement
Element waarvan slechts een zeer kleine hoeveelheid van in het materiaal aanwezig is. ⇒ hoofdstuk 3 § 5.1.2.

Steenkalk
Kalk die is verkregen door het uitdampen van kalkhydraat (calciumhydroxide), ver- kregen door het blussen van gebrande kalk (calciumoxide), dat op zijn beurt weer is verkregen door het branden van kalksteen. Afhankelijk van de hoeveelheid minerale verontreinigingen van de steenkalk is de steenkalk meer of minder hydraulisch. Zuivere kalksteen en marmer levert niet hydraulische, luchthardende steenkalken op, kleihoudende varianten leveren juist hydraulische steenkalken op. ⇒ [met name] hoofdstuk 1 § 1 & § 3, hoofdstuk 2 § 2.3, § 2.7 & § 2.9 & hoofdstuk 5 § 2.1, § 3.1, § 4, § 7.1 & § 7.2.

Steenkolensintels
Niet brandbare resten uit verbrande steenkool, vroeger gebruikt als component in kalkmortel, in plaats van zand en puzzolaan. Toepassing is volgens Van der Kloes 1893 af te raden en kan tot zoutuitbloei leiden. Zie ook ⇒ Doorniksche asch. ⇒ hoofdstuk 3 § 2.4.

Steken
Rechte scheuren in voornamelijk hardsteen, die na verloop van tijd ontstaan. Ontstaan in het toegepaste bouwmateriaal, mede onder invloed van temperatuurswisselingen, als gevolg van reeds in het ruwe materiaal aanwezige structuurverschillen.

Stollingsgesteenten
Groep van gesteenten die door stolling van een magma of lava zijn ontstaan. Magma is gesmolten gesteente dat niet uit een vulkaan is gestroomd. Lava is gesmolten gesteente dat wel uit een vulkaan is gestroomd. Uit magma ontstaan de dieptegesteenten, die geheel kristallijn zijn en uit lava ontstaan de uitvloeingsgesteenten, die kristallen bevatten in een glasachtige of microkristallijne grondmassa.

Strandzand
Zand dat boven de laagwaterlijn van de zee op het strand aanwezig is, veelal aangerijkt aan schelpen en plaatselijk aan korreljets van zware mineralen. ⇒ hoofdstuk 3 § 2.5.

Stuifzandafzettingen
Dainvormige lichamen van zand dat door de wind is vervoerd en niet nabij de
kust op het land is afgezet ten tijden van droogte en geringe begroeiing van het land. Voorbeeld: stuifzanden op de Veluwe. ⇒ hoofdstuk 3 § 2.5.

Styloliet
In de steenhouwersbranche brand, brandlijn of brandlaag genoemd. Golvend laagje van circa één millimeter dik in kalksteen, opgevuld met kleimineren of organisch materiaal. Ontstaan onder geologische omstandigheden ten gevolge van plaatselijke oplossing van de kalksteen door druk van het bovenliggende kalksteenpakket, of door druk die gepaard gaat met gebergtevorming. Styloliën be- vatten de stoffen die na oplossing van het calciumcarbonaat in de kalksteen achter blijven. ⇒ hoofdstuk 3 § 2.1.

Synthetische puzzolaan
Een puzzolaan die verkregen wordt door het vermalen van niet in de natuur gevormde materialen die glasachtige componenten bevatten, waaronder zwak ge- brande keramische bouwmaterialen zoals dakpannen. Ook vliegas en silicafume zijn synthetische puzzolanen. ⇒ hoofdstuk 2 § 2.9 & hoofdstuk 3 § 2.4.

Thaumasiet
Verbinding die ontstaat door een reactie van mortelcomponenten met calci- umsulfaat en water (CaCO3 · CaSiO3 · CaSO4 · 15H2O). De mortel dient de componenten calciumcarbonaat en calciummonosilicaat te bevatten. De ver- binding neemt een groter volume in dan de oorspronkelijke componenten. Dat kan tot zwelling van de mortel leiden. ⇒ hoofdstuk 4 § 3.3 & § 3.4 & hoofdstuk 5 § 3.4 vragen 14 & 16.

Thenardiet
Na2SO4. ⇒ hoofdstuk 4 § 3.3.

Toeslagstoffen, toeslag
⇒ Aggregaat. Een mortel is opgebouwd uit tenminste twee componenten, te weten bindmiddel en toeslagstof. De toeslagstof is te definiëren als de korrelvormige component in een mortel die niet deel neemt aan chemische reacties. Ook niet reagerende delen die zouden moeten of kunnen behoren bij de bindmiddelcomponent, zoals onvoldoende gebrande kalk en een teveel aan puzzolaan, behoren in feite tot het toeslagmateriaal. ⇒ hoofdstuk 1 § 1.1 & § 1.2, hoofdstuk 2 § 2.2, § 2.3 & § 2.5, hoofdstuk 3 § 2.3, § 2.4, § 3.2, § 6.3 & § 7.3, hoofdstuk 4 § 3.4 & § 3.8 & hoofdstuk 5 § 1, § 3, § 4.1, § 4.4 & § 4.5.

Traditionele cementmortel
De thans in de nieuwbouwpraktijk gebruikte mortels, waarin cement het (voornaamste) bindmiddel vormt. Traditioneel is hier gebruikt om deze mortel te onderscheiden van speciaal samengestelde mortels, zoals specifieke restauratiemortels. ⇒ hoofdstuk 1 § 2.1 & § 3.3.

Tertair
Geologische periode van 65 tot twee miljoen jaar geleden in het Kenozoïcum (65 miljoen jaar geleden tot heden). ⇒ hoofdstuk 3 § 2.3.

Trachiet
Vulkanisch uitvloeiingsgesteente, opgebouwd uit kristallen van sanidien (een mineral dat behoort tot de mineralogische subgroep der veldspaten) in een min of meer glasachtige grondmassa die de kristallen omgeeft. ⇒ hoofdstuk 3 § 2.3.

Trachietisch
Samenstelling van een vulkanisch gesteente of tuf, overeenkomend met die van een trachiet.

Tras
In Nederland veelvuldig toegepaste puzzolaan. (Fijn)gemalen tufsteen, veelal afkomstig uit het Brohmerdal en het Nettedal in de Duitse Vulkaaneifel en uit het Rijndal. Reageert met vrije kalk (calciumhydroxide) en water tot onder andere calciumsilicaat en andere reactieproducten, die een bijdrage leveren aan de eind- sterke en waterdichtheid van traskalkmortels. ⇒ hoofdstuk 1 § 1.1 & § 1.2, hoofdstuk 2 § 2.7, § 2.8, § 2.9 & § 3, hoofdstuk 3 § 2.3, § 2.4, § 3.2, § 6.3 & § 7.3, hoofdstuk 4 § 3.4, § 3.7 & § 3.9 & hoofdstuk 5 § 1.3, § 2.1, § 3.1, § 3.3, § 3.4 vragen 2, 3, 5, 10, 12, 14 & 16, § 4.1 & § 4.5.

Travertijn
Een kalksteen die ten gevolge van oververzadiging van calciumcarbonaatwater is ontstaan in de nabijheid van warme bronnen. ⇒ hoofdstuk 1 § 2.1.

Tuf, tufkrijt
⇒ Maastrichter stenen. ⇒ hoofdstuk 2 § 2.1 & § 2.3 & hoofdstuk 5 § 1.3.

Tufsteen
Soort vulkanisch gesteente dat na verharding uit vulkanische as of tuf is ontstaan. Bevat kristallen (of fragmenten daarvan) van vulkanische mineralen, gesteente-fragmenten en een glasachtige component, die in gemalen vorm (tras) reactief is en reageert met de vrije kalk van de mortel. ⇒ hoofdstuk 2 § 2.2 & § 2.3 & hoofdstuk 3 § 2.3.

TWIN-model
Model dat wordt gebruikt om het milieueffect van een bepaald materiaal met dat van andere materialen te vergelijken. Verbetering van de zogenaamde Life Cycle Analysis. In tegenstelling daarmee worden ook aspecten die niet in cijfers zijn uit de drukken analise toegevoegd. Het model is daarom minder objectief maar meer betrouwbaar. ⇒ hoofdstuk 1 § 3.1.

Uitbloei
⇒ Efflorescentie. Uitbloei (van zouten) aan het oppervlak van een constructie. ⇒ Uitloging.
Kalkboek

Uitkristalliseren
Het aannemen van de vaste vorm van een substantie vanuit een oplossing of smelt, waarbij de atomen van de vaste stof in een kristallooster worden geordend.

Uitlevering
De mate waarin zand aan kalk kan worden toegevoegd, zonder dat de verse mortel coherente of plasticiteit verliest.

Uitloging
Het uitlogen. Proces waarbij oplosbare stoffen die in een mortel of steen aanwezig zijn als gevolg van de aanwezigheid van water en van transport van deze oplosbare stoffen in of met water uit de muur verdwijnen. In enge zin gaat het bij uitloging om het uittreden van stoffen onder invloed van stromend (door-sijpelend) water. Dit ter onderscheiding van ⇒ uitbloei waarbij het transport wordt verzorgd door capillaire krachten. ⇒ hoofdstuk 4 § 2.1, § 2.2, § 3.7 & § 3.8.

Uitvoeringsproces
Geheel van werkzaamheden die worden uitgevoerd bij de realisatie, wijziging, reparatie of behandeling van een bouwwerk of een onderdeel daarvan.

Van Meegeren-effect
Het gegeven dat een imitatie van een werkwijze of een techniek altijd een hedendaagse interpretatie van deze werkwijze en techniek zal zijn en de kans groot is, dat de imitatie (op den duur, onbedoeld) als zodanig herkenbaar zal zijn. ⇒ hoofdstuk 1 § 2.1.

Veldspaat, sanidien
Subgroep van mineralen die behoren tot de mineralogische groep der netwerksilicaten. ⇒ hoofdstuk 3 § 2.3 & § 2.5.

Verbranden van mortel
Het in specie (en mortel) vroegtijdig stoppen van verhardingsreacties waaraan water deelneemt ten gevolge van het te snel onttrekken van water aan de specie. Gevolg is het niet volledig uitwassen van het bindmiddel, waardoor de hechting daarvan met de korrels tekort schiet. ⇒ hoofdstuk 3 § 7.2 & § 7.5, hoofdstuk 4 § 3.8 & § 3.9 & hoofdstuk 5 § 3.3 & § 4.4.

Verhardingskrimp
Afnemen van de afmetingen van materiaal als gevolg van het chemische proces waardoor een mortel verhardt. ⇒ hoofdstuk 2 § 2.9 & § 2.11, hoofdstuk 3 § 4.1, § 6.3 & § 7.5, hoofdstuk 4 § 2.1 & § 3.4 & hoofdstuk 5 § 3.1 & § 3.2.

Verstening
Het proces waardoor niet samenhangende sedimenten hun samenhang verkrijgen, onder andere ten gevolge van de opbouw van een cement of matrix, dat de losse deeltjes aaneenknipt. Bijvoorbeeld het ontstaan van zandsteen uit los zand. ⇒ hoofdstuk 3 § 2.1.

Verwering
Proces waarbij door natuurlijke invloeden materialen vervallen. ⇒ hoofdstuk 1 § 2.3, hoofdstuk 3 § 2.1 & § 2.5, hoofdstuk 4 § 2.1, § 3.9 & § 3.12 & hoofdstuk 5 § 3.4 vraag 14.

Verwerkbaarheid
Mate waarin een materiaal (gemakkelijk) kan worden verwerkt. ⇒ hoofdstuk 1 § 1.1 & § 1.2, hoofdstuk 2 § 2.7, § 2.9 & § 2.11, hoofdstuk 3 § 2.5, § 3.1, § 4.1 & § 7.5, hoofdstuk 4 § 3.9 & hoofdstuk 5 § 3.1, § 3.3 & § 3.4 vragen 8 & 9.

Vette specie
Specie waarin het bindmiddelgehalte zo groot is dat het volume van het bindmiddel-watermengsel groter is dan het luchtgevulde poriënvolume. De verharde mortel die uit een vette specie ontstaat bevat hierdoor nauwelijks grotere luchtgevulde poriën, maar wel microporiën, die vochtdempende kunnen transporteren. De korrels van de toeslagstof raken elkaar niet, maar drijven in het bindmiddel. ⇒ hoofdstuk 3 § 6.3 & hoofdstuk 5 § 3.2 & § 4.4.

Vleivlak
De bovenzijde van het (horizontale) speciebed, waarin de (bak)steen gevleid wordt.

Vliegas
Condensaat van rookgassen van kolengestookte elektriciteitscentrales. Puzzolanaan, bestaande uit zeer fijne bolletjes van amorf, glasachtig materiaal met een zwarte kleur. Wordt veel gebruikt in combinatie met portlandcement (portlandvliegas cement) hoofdstuk 3 § 2.4 & hoofdstuk 4 § 2.4.

Voeg
Bij stapelconstructies zoals metselwerk de (met mortel gevulde) ruimte tussen de (bak)stenen. In het bijzonder wordt met voeg ook het buitenste deel van de voeg tussen de stenen bedoeld, waar de voeg in het zicht is en soms met een speciale voegmortel of op een bepaalde wijze is afgezwakt. ⇒ hoofdstuk 1 § 2.1 & § 2.3, hoofdstuk 2 § 2.2, § 2.5, § 2.7, § 2.8 & § 2.9, hoofdstuk 4 § 2.2, § 2.1, § 2.2, § 3.2, § 3.3, § 3.4, § 3.5, § 3.7, § 3.9 & § 3.10 & hoofdstuk 5 § 1.1, § 2, § 3.1, § 3.3 & § 4.2.

Voegmortel
Mortel bedoeld voor of toegepast in navoegwerk en hervoegwerk. ⇒ hoofdstuk 1 § 1, hoofdstuk 2 § 2.8, hoofdstuk 4 § 2.1, § 3.2, § 3.5, § 3.9, § 3.10 & § 3.11 & hoofdstuk 5 § 1.3, § 2.1, § 3.2, § 3.3, § 3.4 vraag 8 & § 4.2.

Vulkanische bom
Door vulkanische gassen onder hoge druk uit de vulkaanmond geworpen fragment (vloeibare lava, die tijdens zijn luchttocht snel afkoelt, voordat deze op de grond valt. Vaak boren vulkanische bomen zich heel of gedeeltelijk

290
Aanhangsel

Vulkanische tuf
Gesteente dat door verstening van ongeconsolideerde vulkanische ≫ tuf is ontstaan. Tuf bevat vulkanische stof of as, door gas gefragmenteerde brokjes lava en stukjes nevengesteente, de gesteenten waardoor de magmaprop zich een weg heeft gebaand op weg naar het aardoppervlak.

Vuursteen
Niet-kristalline (amorfe) variëteit van kwarts (siliciumoxide, SiO₂). Frans: silex; Engels: chert. ≫ hoofdstuk 3 § 2.1.

Vuursteenconcretie
Plaatselijke aanrijking aan vuursteen in kalksteen met wisselende vormen, meestal knol-, of botvormig. Over het ontstaan van vuursteenconcreties staat nog geen consensus, ondanks het feit dat deze concreties een vertrouwd beeld zijn in vele soorten van kalksteen, waaronder de mergel in Zuid Limburg. ≫ hoofdstuk 3 § 2.1.

Vuursteenknol
⇒ Vuursteenconcretie. ≫ hoofdstuk 3 § 2.1.

Waarden
Waarde is de grootte van de betekenis van iets. Hier wordt met waarde en waarden met name geduid op de betekenis die iets (in casu erfgoed) heeft in cultuurhistorische zin. Net als betekenissen zijn waarden geen intrinsieke eigenschappen van het erfgoed maar worden deze (door iemand, door een groep, gemeenschap of samenleving) toegekend. De waarden van erfgoed, van een monument, zijn daarom niet absoluut maar zullen verschillen naar gelang het perspectief van de beschouwer, opvattingen van de samenleving en in de loop der tijd.

Waterkalk
Historische term. De meest hydraulische kalk die uit Doornikse steen door branden en blussen werd verkregen. Een in Nederland zeer gewaardeerd bindmiddel. ≫ hoofdstuk 2 § 2.9 & hoofdstuk 3 § 2.1.

Waterretentie
Vermogen om water vast te houden. ≫ hoofdstuk 3 § 4.1 & hoofdstuk 5 § 1.3.

Wilde tras
⇒ Waterkalk.

XRD
Röntgen Diffractie. Kristallografische analysetechniek, gebruikt voor de identificatie van kristalline materialen op basis van hun specifieke kristalstructuur. ≫ hoofdstuk 4 § 3.2 & § 3.3 & hoofdstuk 5 § 1.1 & § 1.4.

Zand
Geologie: Een niet samenhangend (ongeconsolideerd) sediment, waarvan de korrels in grootte kunnen variëren van 64 µm tot twee millimeter, veelal opgebouwd uit korrels van het mineraal kwarts (maar ook wel andere gesteenten; bijvoorbeeld 'kalksteenzand'). Morteletechnologie: Agregaat gebruikt in mortels, veelal opgebouwd uit korrels van het mineraal kwarts, waarvan de korrels doorgaans in omvang variëren van 0,1 tot vier millimeter. Indien het om metsel- of voegmortels gaat hangt de maximale korrelgrootte af van de dikte van de voeg. ≫ [met name] hoofdstuk 3 § 2.5.

Zuivere kalksteen
Kalksteen met geen of zeer weinig verontreinigingen door bijvoorbeeld klei of zand. ≫ hoofdstuk 1 § 1.1, hoofdstuk 2 § 2.3, § 2.8 & § 2.9 & hoofdstuk 3 § 2.1.

Zware mineralen
Mineralen met een veel hogere soortelijke massa dan kwarts. Hierdoor kunnen korrels van zware mineralen onder bepaalde omstandigheden niet meer door stromend water worden vervoerd, maar kwartskorrels nog juist wel, met plaatstijlige ≫ aanrijking aan korrels van zware mineralen tot gevolg, zogenaamd plaerzand. ≫ hoofdstuk 3 § 2.5.

Zeezand
Zand dat door rivieren naar de zee is afgevoerd en (relatief) kustnabij op de zeebodem is afgezet. ≫ hoofdstuk 3 § 2.5.
Kalkboek
8 Auteurs en andere betrokkenen

Auteurs en redactie

Koen van Balen is als hoofddocent verbonden aan de Katholieke Universiteit Leuven, heeft een internationale onderzoeksservaring in de technische aspecten van de conservering van het gebouwde erfgoed en is lid van verschillende monumentenzorgorganisaties. Hij promoveerde in 1991 op een onderzoek naar de carbonatatie van kalkmortel en haar invloed op historische structuren. Hij fungeerde als voorzitter van de redactie van het voorliggende boek.

Bert van Bommel is senior beleidsmedewerker monumentenzorg bij de Rijksgebouwendienst. Hij publiceerde onder andere in het Restauratievademecum en het Praktijkboek Instandhouding Monumenten over verschillende onderwerpen op het gebied van instandhoudingstechnologie en de ethiek van de instandhouding. Hij fungeerde als secretaris van de Werkgroep Kalk en van de redactie van dit boek en is verantwoordelijk voor de bureauredactie en vormgeving van deze uitgave.

Rob van Hees is werkzaam bij TNO Bouw als senior wetenschappelijk medewerker en coördinator van de productgroep Gebruik en Instandhouding. Zijn belangrijkste aandachtsgebieden zijn duurzaamheid van materialen, conserveringstechnieken en compatibiliteit van nieuwe en oude materialen. Hij is actief in veel Europese researchprojecten en (inter)nationale onderzoekscommissies op gebieden als metselwerk, mortels, vochtproblemen en conserveringstechnieken.

Jeroen van Rhijn is geoloog en directeur van Rockview Gesteente-expertisebureau te Amsterdam. Een groot deel van zijn activiteiten betreffen toegepaste geologische en petrografische onderzoeken ten behoeve van restauraties. Naast de keuring van dakleien en andere natuursteen omvat dit vooral het onderzoek naar de eigenschappen van toegepaste baksteen, natuursteen en mortel, naar aantastingsprocessen in gemetselde constructies, de eisen te stellen aan nieuw toe te passen materialen en de keuring daarvan.

De redactie van dit boek was in handen van Koen van Balen, Bert van Bommel, Rob van Hees, Frans van der Helm (coördinator onderzoek en publicatiebeleid bij de Rijksdienst voor de Monumentenzorg), Michiel van Huyen (coördinator instandhoudingstechnologie bij de Rijksdienst voor de Monumentenzorg), Jeroen van Rhijn en Matth van Rooden (oud medewerker (coördinator instandhoudingstechnologie) van de Rijksdienst voor de Monumentenzorg).

De auteurs hebben bij de samenstelling van de tekst gebruik gemaakt van suggesties, commentaren en informatie, aangeleverd door Kristof Callebaut (geoloog, voorheen verbonden aan de Katholieke Universiteit Leuven), René van der Loos (divisiehoofd Research bij het Nederlands Instituut voor Bouwbiologie en Ecologie (NIBE) te Bussum) en Lock van der Klugt (voorheen verbonden aan TNO Bouw te Delft).

De werkgroep kalk

De grondslag voor het voorliggende boek wordt gevormd door de resultaten van de vergaderingen van een brede werkgroep van deskundigen, die op uitnodiging van de Rijksdienst voor de Monumentenzorg meerdere malen bijeen is gekomen. Deze werkgroep kalk was een initiatief van Matth van Rooden, die zich als coördinator instandhoudingstechnologie gefronteerd zag met vele vragen over de toepassing van kalk in metsel- en voegmortels voor de restauratie.

Na de afronding van het typoscript is de werkgroep uitgebreid met enkele leden. Het typoscript is aan deze uitgebreide werkgroep voorgelegd en het vergaarde commentaar is in de uiteindelijke, voorliggende tekst verwerkt.
De volgende personen hebben in de eerste en/of de latere – uitgebreide – werkgroep hun bijdrage geleverd:

Prof. Dr. Ir. Arch. K. van Balen, Faculteit Toegepaste Wetenschappen, Katholieke Universiteit Leuven, departement Burgerlijke Bouwkunde en Internationaal R. Lemaire centrum voor de Monumentenzorg,

Ing. A.J. van Bommel, Advies en Architectuurbedrijf van de Rijksgebouwendienst,

R. van Bommel, K. van Bommel & zn BV,

N. Boterbloem, Stichting Instituut voor Keuring en Onderzoek van Bouwmaterialen,

H. Coster, Schelpkalk Harlingen,

R. Crevecoeur, Instituut Collectie Nederland,

W. Goedhart, Voegbedrijf Goedhard,

Dr. Ir. C.J.W.P. Groot, Faculteit der Civiele Techniek, Stevinlaboratorium, Technische Universiteit Delft,

Ir. R. Hayen, Arte Constructo en Faculteit Toegepaste Wetenschappen, Katholieke Universiteit Leuven, departement Burgerlijke Bouwkunde,

Ir. R.P.J. van Hees, TNO Bouw,

H.P.A Heijstra, Unicor,

G. den Hoed, Firma Gebr. den Hoed en Zn,

Ir. M. van Hunen, Rijksdienst voor de Monumentenzorg,

Ing. L.J.A.R. van der Klugt, voorheen TNO Bouw,

M. Kluivers, Lhoist Nederland NV,

Dr. F.J. Levelt, Koning en Bienfait,

Ir. R. van der Loos, Nederlands Instituut voor Bouwbiologie en -Ecologie,

Ing. M.L. Ouwehand, Schelpkalk Harlingen BV,

E.C. van der Plas, Bedrijfschap Stucadoors, Terrazzo en Steengaasstellers,

Drs. J.C. van Rhijn, Rockview Gesteente Expertisebureau,

M.W.J. van Roojen, voorheen Rijksdienst voor de Monumentenzorg,

C. van der Salm, Aannemersbedrijf Huurman BV,

M. Swolfs, Arte Constructo,

J.F. Uittien, Bouwbedrijf Obdeijn,

B.J. Verhey, Bofimex / Unicor Bouwstoffen BV,

S.J.E. van Vegchel, Bofimex / Unicor Bouwstoffen BV,

C.V. Voet, Arte Constructo,

Prof. Dr. Ing. D.J. de Vries, Rijksdienst voor de Monumentenzorg,

Ir. T. Wijffels, TNO Bouw.
Aanhangsel
9 Colofon

© 2003 Rijksdienst voor de Monumentenzorg, Zeist

Vertalingen samenvatting
Word Translation Services en redactie

Vormgeving
Bert van Bommel

Omslagontwerp
Rijksdienst voor de Monumentenzorg, afdeling Communicatie

Fotografie
Redactieleden (tenzij anders vermeld)

Omslag

* Links van de eerste pagina’s van de hoofdstukken zijn foto’s van Bernd en Hilla Becher uit de collectie van de Lhoist Group opgenomen:

p. 14 Dugny, Frankrijk
p. 48 Brielle, Nederland
p. 80 Dieversburg, Nederland
p. 130 Rüdersdorf, Duitsland
p. 174 Wertingen bei Dillingen, Duitsland
p. 236 Jemelle, België
p. 240 Saal, Duitsland

De foto’s hebben in verband met de opmaak van dit boek een iets andere uitsnede dan de originele, die zijn gepubliceerd in:

Druk
Drukkerij Biblo BV, ’s-Hertogenbosch

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK ’S-GRAVENHAGE
ISBN 90 72691 36 9 geb. NUR 648
Trefw.: bouwmaterialen ; kalk : mortel ; monumenten : restauratie.

296